Let's denote mean a=72,a = 72,a=72, standard deviation σ=12.5\sigma = 12.5σ=12.5.
We will use the formula:
P(∣x−a∣<ϵ)=2Ф(ϵσ)P(|x-a|< \epsilon) = 2Ф(\cfrac{\epsilon}{\sigma})P(∣x−a∣<ϵ)=2Ф(σϵ) , where ФФФ denotes cumulative distribution function for normal distribution.
Thus:
P(65<x<79)=P(∣x−72∣<7)=2Ф(712.5)≈0.4246P(65<x<79) = P(|x-72|<7)=2Ф(\cfrac{7}{12.5}) \approx 0.4246P(65<x<79)=P(∣x−72∣<7)=2Ф(12.57)≈0.4246
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments