Solution
The measures of variability are:
Range, Interquartile range, variance, standard deviation and mean deviation.
Range:
Largest value - Smallest value
Range is 599
Interquartile Range
"={Q_3-Q_1}""Q_1= L+{h \\over f}({n\\over4}-cf)""Q_3= L+{h \\over f}({3n\\over4}-cf)"
where L= lower limit of the class, h= class width, f= frequency of the class, n= no. of samples, cf= cumulative frequency above the quartile class
"{1 \\over 4}*40=10 \\therefore" Q1 lies on the third class between 301-400.
"{3 \\over 4}*40=30 \\therefore Q_3" lies on the fifth class between 501-600
"\\therefore Q_3=500.5+{100 \\over 10}({3*40 \\over 4} -24) = 560.5"
"IQR={560.5-389.38}=171.12"
Inter-quartile range is 85.56
Variance
"var={\\sum x^2f -({\\sum fx \\over n})^2 \\over n-1}""= ({9398810-{18820 \\over 40} \\over 39})=240983.0641"
Variance is 240983.0641
Standard deviation
"SD = \\sqrt{var} = \\sqrt{240983.0641}""=490.9002588"Standard deviation is 490.9003
Mean deviation
"={\\sum f(x- \\bar{x}) \\over n} = {0 \\over 40}=0"
Comments
Leave a comment