X∼N(μ,σ2)
Then Z=σX−μ∼N(0,1)
Given μ=1.9g,σ=0.55g
P(X<1.2)=P(Z<0.551.2−1.9)==P(Z<−1114)≈0.101577
P(X<2.5)=P(Z<0.552.5−1.9)=
=P(Z<1112)≈0.862344
P(1.2<X<2.5)=P(X<2.5)−P(X<1.2)≈
≈0.862344−0.101577≈0.760767
P(X≥2.5)=1−P(X<2.5)≈
≈1−0.862344≈0.137656
10.1577%, 76.0767%, 13.7656%
P(k<X<2.5)=P(X<2.5)−P(X<k)=0.8
P(X<k)=P(X<2.5)−0.8≈
≈0.862344−0.8=0.062344=P(Z<0.55k−1.9)
z=0.55k−1.9≈−1.53539
k≈1.9−0.55⋅1.53539≈1.0555
k=1.0555
Comments