a patrol distributor records shows that sales average 3500 its per day with a stadard deviation 250 .. assume that the sales are normally distributed, find the probability of daily sales between 3300 litre 3800 litre?
1
Expert's answer
2020-09-09T18:50:45-0400
Distribution function is P(X≤x)=F(x)=2502π1−∞∫xe−2⋅2502(t−3500)2dt
If we take u=250t−3500, then 2⋅2502(t−3500)2=2u2 and dt=250du, so F(x)=2502π1−∞∫250x−3500e−2u2⋅250du=2π1−∞∫250x−3500e−2u2du=
=Φ(250x−3500), where Φ(y)=2π1−∞∫ye−2u2du
So the required probability is P(3300≤X≤3800)=F(3800)−F(3300)=
=Φ(1.2)−Φ(−0.8)
From the table of standard normal distribution https://www.math.arizona.edu/~rsims/ma464/standardnormaltable.pdf we can see that Φ(1.2)≈0.88493 and Φ(−0.8)≈0.21186, so P(3300≤X≤3800)≈0.88493−0.21186=0.67307
Comments