Question #132224
a patrol distributor records shows that sales average 3500 its per day with a stadard deviation 250 .. assume that the sales are normally distributed, find the probability of daily sales between 3300 litre 3800 litre?
1
Expert's answer
2020-09-09T18:50:45-0400

Distribution function is P(Xx)=F(x)=12502πxe(t3500)222502dtP(X\le x)=F(x)=\frac{1}{250\sqrt{2\pi}}\int\limits_{-\infty}^x e^{-\frac{(t-3500)^2}{2\cdot 250^2}}dt

If we take u=t3500250u=\frac{t-3500}{250}, then (t3500)222502=u22\frac{(t-3500)^2}{2\cdot 250^2}=\frac{u^2}{2} and dt=250dudt=250du, so F(x)=12502πx3500250eu22250du=12πx3500250eu22du=F(x)=\frac{1}{250\sqrt{2\pi}}\int\limits_{-\infty}^\frac{x-3500}{250} e^{-\frac{u^2}{2}}\cdot 250du=\frac{1}{\sqrt{2\pi}}\int\limits_{-\infty}^\frac{x-3500}{250} e^{-\frac{u^2}{2}}du=

=Φ(x3500250)=\Phi(\frac{x-3500}{250}), where Φ(y)=12πyeu22du\Phi(y)=\frac{1}{\sqrt{2\pi}}\int\limits_{-\infty}^y e^{-\frac{u^2}{2}}du

So the required probability is P(3300X3800)=F(3800)F(3300)=P(3300\le X\le 3800)=F(3800)-F(3300)=

=Φ(1.2)Φ(0.8)=\Phi(1.2)-\Phi(-0.8)

From the table of standard normal distribution https://www.math.arizona.edu/~rsims/ma464/standardnormaltable.pdf we can see that Φ(1.2)0.88493\Phi(1.2)\approx 0.88493 and Φ(0.8)0.21186\Phi(-0.8)\approx 0.21186, so P(3300X3800)0.884930.21186=0.67307P(3300\le X\le 3800)\approx0.88493-0.21186=0.67307

Answer: 0.673070.67307


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS