Question #132042
Let X have a binomial distribution with n = 4 and P = 1/3 Find the probability. (i) P (X = 1) (ii) P (X = 3/2 ) (iii) P (X = 3) (iv) P (X = 6) (v) P (X ≤ 2) *
1
Expert's answer
2020-09-08T13:12:39-0400

P(X=k)=(nk)pk(1p)nkP(X=k) = ( \begin{matrix} n \\ k \end{matrix}) p^k(1-p)^{n-k} - binomial distribution that describes k successes in n independent experiments. k=0,1,...,n. In our case: p =1/3, q=2/3, n=4, k={0,1,2,3,4}.

(i)P(X=1)=4!1!  3!(13)(23)3=4881=3281=0.395P (X = 1) = \frac{4!}{1!\; 3!} (\frac{1}{3})(\frac{2}{3})^3 = 4 \cdot \frac{8}{81} = \frac{32}{81} = 0.395

(ii) P(X=32)=0P(X=\frac{3}{2}) = 0 since X=32X=\frac{3}{2} is not integer

(iii) P(X=3)=4!3!  1!(13)323=4281=881=0.0987P (X = 3)= \frac{4!}{3!\; 1!} (\frac{1}{3})^3 \frac{2}{3} = 4 \cdot \frac{2}{81} = \frac{8}{81} = 0.0987

(iv) P(X=6)=0P (X = 6) = 0, because possible value of k is grater than n, we cannot get more successful results that amount of experiments.

(v) P(X2)=P(X=0)+P(X=1)+P(X=2)P (X ≤ 2) = P(X=0)+ P(X=1) + P(X=2)

P(X=0)=4!0!  4!(13)0(23)4=11681=0.197P(X=0) = \frac{4!}{0!\; 4!} (\frac{1}{3})^0 (\frac{2}{3})^4= 1 \cdot \frac{16}{81} = 0.197

P(X=2)=4!2!  2!(13)2(23)2=4321949=2481=0.296P(X=2) = \frac{4!}{2!\; 2!} (\frac{1}{3})^2 (\frac{2}{3})^2 = \frac{4 \cdot 3}{2} \cdot \frac{1}{9} \cdot \frac{4}{9} = \frac{24}{81} = 0.296

P(X2)=0.197+0.395+0.296=0.888P (X ≤ 2) = 0.197+0.395+0.296=0.888


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS