"P(X=k) = ( \\begin{matrix} n \\\\ k \\end{matrix}) p^k(1-p)^{n-k}" - binomial distribution that describes k successes in n independent experiments. k=0,1,...,n. In our case: p =1/3, q=2/3, n=4, k={0,1,2,3,4}.
(i)"P (X = 1) = \\frac{4!}{1!\\; 3!} (\\frac{1}{3})(\\frac{2}{3})^3 = 4 \\cdot \\frac{8}{81} = \\frac{32}{81} = 0.395"
(ii) "P(X=\\frac{3}{2}) = 0" since "X=\\frac{3}{2}" is not integer
(iii) "P (X = 3)= \\frac{4!}{3!\\; 1!} (\\frac{1}{3})^3 \\frac{2}{3} = 4 \\cdot \\frac{2}{81} = \\frac{8}{81} = 0.0987"
(iv) "P (X = 6) = 0", because possible value of k is grater than n, we cannot get more successful results that amount of experiments.
(v) "P (X \u2264 2) = P(X=0)+ P(X=1) + P(X=2)"
"P(X=0) = \\frac{4!}{0!\\; 4!} (\\frac{1}{3})^0 (\\frac{2}{3})^4= 1 \\cdot \\frac{16}{81} = 0.197"
"P(X=2) = \\frac{4!}{2!\\; 2!} (\\frac{1}{3})^2 (\\frac{2}{3})^2 = \\frac{4 \\cdot 3}{2} \\cdot \\frac{1}{9} \\cdot \\frac{4}{9} = \\frac{24}{81} = 0.296"
"P (X \u2264 2) = 0.197+0.395+0.296=0.888"
Comments
Leave a comment