Question #131027

A random process has sample functions of the form X(t) = Acos(wt+Θ) where w is constant, A is a random variable that has a magnitude of +1 and −1 with equal probability, and Θ is a random variable that is uniformly distributed between 0 and 2π. Assume that the random variables A and Θ are independent. 1. Is X(t) a wide-sense stationary process?


1
Expert's answer
2020-08-31T17:09:24-0400

1.

E[X(t)]=E[Acos(ωt+Θ)].E[X(t)]=E[Acos(\omega t+\Theta)].

Since AA and Θ\Theta are independent, then

E[X(t)]=E[Acos(ωt+Θ)]=E[A]E[cos(ωt+Θ)]=(11/2+(1)1/2)E[cos(ωt+Θ)]=0E[cos(ωt+Θ)]=0.E[X(t)]=E[Acos(\omega t+\Theta)]=\\ E[A]\cdot E[cos(\omega t+\Theta)]=\\ (1\cdot1/2+(-1)\cdot1/2)E[cos(\omega t+\Theta)]=\\ 0\cdot E[cos(\omega t+\Theta)]=0.

Expectation of A2A^2:

E[A2]=(121/2+(1)21/2)=1.E[A^2]=(1^2\cdot1/2+(-1)^2\cdot1/2)=1.

2.

Correlation function:

R(t1,t2)=E[X(t1)X(t2)]=E[Acos(ωt1+Θ)Acos(ωt2+Θ)]=E[A2]E[cos(ωt1+Θ)cos(ωt2+Θ)]=R(t_1,t_2)=E[X(t_1)X(t_2)]=\\ E[Acos(\omega t_1+\Theta)\cdot Acos(\omega t_2+\Theta)]=\\ E[A^2]E[cos(\omega t_1+\Theta)\cdot cos(\omega t_2+\Theta)]=\\

E[cos(ωt1+Θ)cos(ωt2+Θ)]=E[12cos(ωt1+Θ+ωt2+Θ)++12cos(ωt1+Θωt2Θ)]=E[12cos(ω(t1+t2)+2Θ)+12cos(ω(t1t2))]=E[12cos(ω(t1+t2)+2Θ)]++E[12cos(ω(t1t2))].E[cos(\omega t_1+\Theta)\cdot cos(\omega t_2+\Theta)]=\\ E[\frac{1}{2}cos(\omega t_1+\Theta+\omega t_2+\Theta)+\\ +\frac{1}{2}cos(\omega t_1+\Theta-\omega t_2-\Theta)]=\\ E[\frac{1}{2}cos(\omega (t_1+ t_2)+2\Theta)+\frac{1}{2}cos(\omega( t_1- t_2))]=\\ E[\frac{1}{2}cos(\omega (t_1+ t_2)+2\Theta)]+\\ +E[\frac{1}{2}cos(\omega( t_1- t_2))].

Since sin(x)sin(x) is periodic, then

E[12cos(ω(t1+t2)+2Θ)]=02π12cos(ω(t1+t2)+2Θ)12πdθ=14πsin(ω(t1+t2)+2Θ)202π=14πsin(ω(t1+t2)+4π)214πsin(ω(t1+t2))2=0,E[\frac{1}{2}cos(\omega (t_1+ t_2)+2\Theta)]=\\ \intop_{0}^{2\pi}\frac{1}{2}cos(\omega (t_1+ t_2)+2\Theta)\frac{1}{2\pi}d\theta=\\ \frac{1}{4\pi}\frac{sin(\omega (t_1+ t_2)+2\Theta)}{2}|_0^{2\pi}=\\ \frac{1}{4\pi}\frac{sin(\omega (t_1+ t_2)+4\pi)}{2}-\frac{1}{4\pi}\frac{sin(\omega (t_1+ t_2))}{2}=0,

hence

R(t1,t2)=E[X(t1)X(t2)]=E[12cos(ω(t1+t2)+2Θ)]++E[12cos(ω(t1t2))]=0+12cos(ω(t1t2))=12cos(ω(t1t2))R(t_1,t_2)=E[X(t_1)X(t_2)]=\\ E[\frac{1}{2}cos(\omega (t_1+ t_2)+2\Theta)]+\\ +E[\frac{1}{2}cos(\omega( t_1- t_2))]=\\ 0+\frac{1}{2}cos(\omega( t_1- t_2))=\\ \frac{1}{2}cos(\omega( t_1- t_2))

3.

Since E[X(t)]=0E[X(t)]=0 and R(t1,t2)=12cos(ω(t1t2))R(t_1,t_2)=\frac{1}{2}cos(\omega( t_1- t_2)) is not random and depends only on (t1t2)(t_1-t_2), then X(t)X(t) is a wide-sense stationary process.

Answer: Yes, X(t)X(t) is a wide-sense stationary process.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS