A random process has sample functions of the form X(t) = Acos(wt+Θ) where w is constant, A is a random variable that has a magnitude of +1 and −1 with equal probability, and Θ is a random variable that is uniformly distributed between 0 and 2π. Assume that the random variables A and Θ are independent. 1. Is X(t) a wide-sense stationary process?
1.
"E[X(t)]=E[Acos(\\omega t+\\Theta)]."
Since "A" and "\\Theta" are independent, then
"E[X(t)]=E[Acos(\\omega t+\\Theta)]=\\\\\nE[A]\\cdot E[cos(\\omega t+\\Theta)]=\\\\\n(1\\cdot1\/2+(-1)\\cdot1\/2)E[cos(\\omega t+\\Theta)]=\\\\\n0\\cdot E[cos(\\omega t+\\Theta)]=0."
Expectation of "A^2":
"E[A^2]=(1^2\\cdot1\/2+(-1)^2\\cdot1\/2)=1."
2.
Correlation function:
"R(t_1,t_2)=E[X(t_1)X(t_2)]=\\\\\nE[Acos(\\omega t_1+\\Theta)\\cdot Acos(\\omega t_2+\\Theta)]=\\\\\nE[A^2]E[cos(\\omega t_1+\\Theta)\\cdot cos(\\omega t_2+\\Theta)]=\\\\"
"E[cos(\\omega t_1+\\Theta)\\cdot cos(\\omega t_2+\\Theta)]=\\\\\nE[\\frac{1}{2}cos(\\omega t_1+\\Theta+\\omega t_2+\\Theta)+\\\\\n+\\frac{1}{2}cos(\\omega t_1+\\Theta-\\omega t_2-\\Theta)]=\\\\\nE[\\frac{1}{2}cos(\\omega (t_1+ t_2)+2\\Theta)+\\frac{1}{2}cos(\\omega( t_1- t_2))]=\\\\\nE[\\frac{1}{2}cos(\\omega (t_1+ t_2)+2\\Theta)]+\\\\\n+E[\\frac{1}{2}cos(\\omega( t_1- t_2))]."
Since "sin(x)" is periodic, then
"E[\\frac{1}{2}cos(\\omega (t_1+ t_2)+2\\Theta)]=\\\\\n\\intop_{0}^{2\\pi}\\frac{1}{2}cos(\\omega (t_1+ t_2)+2\\Theta)\\frac{1}{2\\pi}d\\theta=\\\\\n\\frac{1}{4\\pi}\\frac{sin(\\omega (t_1+ t_2)+2\\Theta)}{2}|_0^{2\\pi}=\\\\\n\\frac{1}{4\\pi}\\frac{sin(\\omega (t_1+ t_2)+4\\pi)}{2}-\\frac{1}{4\\pi}\\frac{sin(\\omega (t_1+ t_2))}{2}=0,"
hence
"R(t_1,t_2)=E[X(t_1)X(t_2)]=\\\\\nE[\\frac{1}{2}cos(\\omega (t_1+ t_2)+2\\Theta)]+\\\\\n+E[\\frac{1}{2}cos(\\omega( t_1- t_2))]=\\\\\n0+\\frac{1}{2}cos(\\omega( t_1- t_2))=\\\\\n\\frac{1}{2}cos(\\omega( t_1- t_2))"
3.
Since "E[X(t)]=0" and "R(t_1,t_2)=\\frac{1}{2}cos(\\omega( t_1- t_2))" is not random and depends only on "(t_1-t_2)", then "X(t)" is a wide-sense stationary process.
Answer: Yes, "X(t)" is a wide-sense stationary process.
Comments
Leave a comment