Question #130981
The height of students in a class is distributed with mean and standard deviation. A random sample of 100 students was taken and the 90% confidence interval for mean was found to be between 175cm and 180cm.Estimate
i)value of the sample mean
Ii)value of standard deviation
Iii)95% confidence interval for mean
1
Expert's answer
2020-09-01T18:22:29-0400

The formula for confidence interval for the mean is given by,


xˉ ± Z(α/2)σN\bar x\ \pm\ Z(\alpha/2)*\frac {\sigma}{\sqrt N}


Given that,

μ\mu1 = 180: Upper limit

μ\mu2 = 175: Lower limit

At 90% confidence interval α=0.1\alpha = 0.1


μ\mu1 = 180 = xˉ + Z(α/2)σN................(Eq. 1)\bar x\ +\ Z(\alpha/2)*\frac {\sigma}{\sqrt N}................(Eq. \ 1)


μ\mu2 = 175 = xˉ  Z(α/2)σN................(Eq. 2)\bar x\ -\ Z(\alpha/2)*\frac {\sigma}{\sqrt N}................(Eq.\ 2)


N = 100


Hence,


μ1μ2=(xˉ+Z(α/2)σN)(xˉZ(α/2)σN)\mu1 - \mu2 = (\bar x+Z(\alpha/2)*\frac {\sigma}{\sqrt N}) - (\bar x-Z(\alpha/2)*\frac {\sigma}{\sqrt N})


180-175 = 2Z(α/2)σN2*Z(\alpha/2)*\frac {\sigma}{\sqrt N}


5 = 2 * Z0.05*σ100\frac{\sigma}{\sqrt 100}





By using the standard normal distribution table we get the Z0.05 = 1.6449 and substituting it in the above equation we get,


σ=15.19849\sigma = 15.19849


Substituting the value of mean in any one of the above equation (say eq. 1) we get,


180 = xˉ+1.644915.19849100\bar x +1.6449*\frac {15.19849}{\sqrt 100}


Hence, xˉ=177.5\bar x = 177.5


ANSWER 1)


Sample mean xˉ=177.5\bar x = 177.5


ANSWER 2)


Standard deviation σ=15.19849\sigma = 15.19849


ANSWER 3)


Using the above values for sample mean and standard deviation we can find 95% confidence interval for mean as under-


Here α=0.05 and (α/2) =0.025\alpha = 0.05\ and\ (\alpha/2)\ = 0.025





By using the standard normal distribution table we get the Z0.025 = 1.96 and substituting it in the above equation 1 & 2 we get,


μ1=\mu1 = 177.5 + 1.96*15.19849100\frac {15.19849}{\sqrt 100} = 180.4789


μ2=\mu2 = 177.5 - 1.96*15.19849100\frac {15.19849}{\sqrt 100} = 174.521


Hence the 95% confidence interval for mean is 174.521 cms & 180.4789 cms


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS