The formula for confidence interval for the mean is given by,
"\\bar x\\ \\pm\\ Z(\\alpha\/2)*\\frac {\\sigma}{\\sqrt N}"
Given that,
"\\mu"1 = 180: Upper limit
"\\mu"2 = 175: Lower limit
At 90% confidence interval "\\alpha = 0.1"
"\\mu"1 = 180 = "\\bar x\\ +\\ Z(\\alpha\/2)*\\frac {\\sigma}{\\sqrt N}................(Eq. \\ 1)"
"\\mu"2 = 175 = "\\bar x\\ -\\ Z(\\alpha\/2)*\\frac {\\sigma}{\\sqrt N}................(Eq.\\ 2)"
N = 100
Hence,
"\\mu1 - \\mu2 = (\\bar x+Z(\\alpha\/2)*\\frac {\\sigma}{\\sqrt N}) - (\\bar x-Z(\\alpha\/2)*\\frac {\\sigma}{\\sqrt N})"
180-175 = "2*Z(\\alpha\/2)*\\frac {\\sigma}{\\sqrt N}"
5 = 2 * Z0.05*"\\frac{\\sigma}{\\sqrt 100}"
By using the standard normal distribution table we get the Z0.05 = 1.6449 and substituting it in the above equation we get,
"\\sigma = 15.19849"
Substituting the value of mean in any one of the above equation (say eq. 1) we get,
180 = "\\bar x +1.6449*\\frac {15.19849}{\\sqrt 100}"
Hence, "\\bar x = 177.5"
ANSWER 1)
Sample mean "\\bar x = 177.5"
ANSWER 2)
Standard deviation "\\sigma = 15.19849"
ANSWER 3)
Using the above values for sample mean and standard deviation we can find 95% confidence interval for mean as under-
Here "\\alpha = 0.05\\ and\\ (\\alpha\/2)\\ = 0.025"
By using the standard normal distribution table we get the Z0.025 = 1.96 and substituting it in the above equation 1 & 2 we get,
"\\mu1 =" 177.5 + 1.96*"\\frac {15.19849}{\\sqrt 100}" = 180.4789
"\\mu2 =" 177.5 - 1.96*"\\frac {15.19849}{\\sqrt 100}" = 174.521
Hence the 95% confidence interval for mean is 174.521 cms & 180.4789 cms
Comments
Leave a comment