The formula for standard deviation (σ) is given by,
"\\sigma = \\sqrt{\\frac{\\sum f * (m-\\bar x)^2}{\\sum f}}"
The formula for mean(x̅) is given by,
"\\bar x = \\frac{\\sum (f*m)}{\\sum f}"
where, f = frequency and
m = midpoint of class.
ANSWER 1 :
From the given data we input the values of Class & frequency in the first 2 columns and find the respective class midpoints 'm' in the third column
From the above table we get,
"\\sum f = 44, \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\sum f * m = 1108\\ \\ \\ \\ \\ \\ \\ \\sum f*(m-\\bar x)^2 = 5336.55"
By using the above formula we get the value of mean
"\\bar x = \\frac{\\sum (f*m)}{\\sum f} = \\frac{1108}{44} = 25.18"
By using the above formula we get the value of standard deviation
"\\sigma = \\sqrt{\\frac{\\sum f * (m-\\bar x)^2}{\\sum f}} = \\sqrt{\\frac{5336.55}{44}} = 11.013"
Hence the standard deviation "\\sigma" of the above data = 11.013
ANSWER 2 :
From the given data we input the values of Class & frequency in the first 2 columns and find the respective class midpoints 'm' in the third column
From the above table we get,
"\\sum f = 100, \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\sum f * m = 7200\\ \\ \\ \\ \\ \\ \\ \\sum f*(m-\\bar x)^2 = 10300"
By using the above formula we get the value of mean
"\\bar x = \\frac{\\sum (f*m)}{\\sum f} = \\frac{7200}{100} = 72"
By using the above formula we get the value of standard deviation
"\\sigma = \\sqrt{\\frac{\\sum f * (m-\\bar x)^2}{\\sum f}} = \\sqrt{\\frac{10300}{100}} = 10.14889"
Hence the standard deviation "\\sigma" of the above grouped data = 10.14889
Comments
Leave a comment