Question #129882
Q.2 An insurance salesman sells polices to 6 men, all of identical age and in good health. According to the actuarial tables, the probabilities that a man of this particular age will be alive 30 years hence is . Find the probability that in 30 years (i) all men (ii) at least 4 men, (iii) only three men, (iv) at most one man will be alive.
1
Expert's answer
2020-08-18T17:47:36-0400

Let X=X= the number of men who will be alive: XBin(n,p)X\sim Bin(n, p)

P(X=x)=(nx)px(1p)nxP(X=x)=\dbinom{n}{x}p^x(1-p)^{n-x}

Given n=6,p=2/3n=6, p=2/3

(i)


P(X=6)=(66)(23)6(123)66=64729P(X=6)=\dbinom{6}{6}({2\over 3})^6(1-{2\over3 })^{6-6}=\dfrac{64}{729}

(ii)


P(X4)=P(X=4)+P(X=5)+P(X=6)=P(X\geq4)=P(X=4)+P(X=5)+P(X=6)=

=(64)(23)4(123)64+(65)(23)5(123)65+=\dbinom{6}{4}({2\over 3})^4(1-{2\over3 })^{6-4}+\dbinom{6}{5}({2\over 3})^5(1-{2\over3 })^{6-5}+

+(66)(23)6(123)66=15(16729)+6(32729)++\dbinom{6}{6}({2\over 3})^6(1-{2\over3 })^{6-6}=15(\dfrac{16}{729})+6(\dfrac{32}{729})+

+64729=496729+\dfrac{64}{729}=\dfrac{496}{729}

(iii)


P(X=3)=(63)(23)3(123)63=160729P(X=3)=\dbinom{6}{3}({2\over 3})^3(1-{2\over3 })^{6-3}=\dfrac{160}{729}

(iv)

P(X1)=P(X=0)+P(X=1)=P(X\leq1)=P(X=0)+P(X=1)=

=(60)(23)0(123)60+(61)(23)1(123)61==\dbinom{6}{0}({2\over 3})^0(1-{2\over3 })^{6-0}+\dbinom{6}{1}({2\over 3})^1(1-{2\over3 })^{6-1}=

=1729+12729=13729=\dfrac{1}{729}+\dfrac{12}{729}=\dfrac{13}{729}



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS