Let "X=" the number of men who will be alive: "X\\sim Bin(n, p)"
"P(X=x)=\\dbinom{n}{x}p^x(1-p)^{n-x}"
Given "n=6, p=2\/3"
(i)
(ii)
"=\\dbinom{6}{4}({2\\over 3})^4(1-{2\\over3 })^{6-4}+\\dbinom{6}{5}({2\\over 3})^5(1-{2\\over3 })^{6-5}+"
"+\\dbinom{6}{6}({2\\over 3})^6(1-{2\\over3 })^{6-6}=15(\\dfrac{16}{729})+6(\\dfrac{32}{729})+"
"+\\dfrac{64}{729}=\\dfrac{496}{729}"
(iii)
(iv)
"P(X\\leq1)=P(X=0)+P(X=1)=""=\\dbinom{6}{0}({2\\over 3})^0(1-{2\\over3 })^{6-0}+\\dbinom{6}{1}({2\\over 3})^1(1-{2\\over3 })^{6-1}="
"=\\dfrac{1}{729}+\\dfrac{12}{729}=\\dfrac{13}{729}"
Comments
Leave a comment