a.
x y x y x 2 y 2 6 40 240 36 1600 7 55 385 49 3025 7 50 400 49 2500 8 41 328 64 1681 10 17 170 100 289 10 26 260 100 676 15 16 240 225 256 S u m = 63 245 1973 623 10027 \def\arraystretch{1.5}
\begin{array}{c:c:c:c:c:c}
& x & y & xy & x^2 & y^2 \\ \hline
& 6 & 40 & 240 & 36 & 1600\\
\hdashline
& 7 & 55 &385 & 49 & 3025\\
\hdashline
& 7 & 50 & 400 & 49 & 2500\\
\hdashline
& 8 & 41 & 328 & 64 & 1681\\
\hdashline
& 10 & 17 & 170 & 100 & 289\\
\hdashline
& 10 & 26 & 260 & 100 & 676\\
\hdashline
& 15 & 16 & 240 & 225 & 256 \\
\hdashline
Sum=& 63 & 245 & 1973 & 623 & 10027
\end{array} S u m = x 6 7 7 8 10 10 15 63 y 40 55 50 41 17 26 16 245 x y 240 385 400 328 170 260 240 1973 x 2 36 49 49 64 100 100 225 623 y 2 1600 3025 2500 1681 289 676 256 10027
x ˉ = 1 n ∑ i = 1 n x i = 63 7 = 9 \bar{x}={1\over n}\displaystyle\sum_{i=1}^nx_i={63\over 7}=9 x ˉ = n 1 i = 1 ∑ n x i = 7 63 = 9
y ˉ = 1 n ∑ i = 1 n y i = 245 7 = 35 \bar{y}={1\over n}\displaystyle\sum_{i=1}^ny_i={245\over 7}=35 y ˉ = n 1 i = 1 ∑ n y i = 7 245 = 35
S S x x = ∑ i = 1 n x i 2 − 1 n ( ∑ i = 1 n x i ) 2 = SS_{xx}=\displaystyle\sum_{i=1}^nx_i^2-{1\over n}\bigg(\displaystyle\sum_{i=1}^nx_i\bigg)^2 = S S xx = i = 1 ∑ n x i 2 − n 1 ( i = 1 ∑ n x i ) 2 = = 623 − 6 3 2 7 = 56 =623-{63^2\over 7}=56 = 623 − 7 6 3 2 = 56
S S y y = ∑ i = 1 n y i 2 − 1 n ( ∑ i = 1 n y i ) 2 = SS_{yy}=\displaystyle\sum_{i=1}^ny_i^2-{1\over n}\bigg(\displaystyle\sum_{i=1}^ny_i\bigg)^2 = S S yy = i = 1 ∑ n y i 2 − n 1 ( i = 1 ∑ n y i ) 2 = = 10027 − 24 5 2 7 = 1452 =10027-{245^2\over 7}=1452 = 10027 − 7 24 5 2 = 1452
S S x y = ∑ i = 1 n x i y i − 1 n ( ∑ i = 1 n x i ) ( ∑ i = 1 n y i ) = SS_{xy}=\displaystyle\sum_{i=1}^nx_iy_i-{1\over n}\bigg(\displaystyle\sum_{i=1}^nx_i\bigg) \bigg(\displaystyle\sum_{i=1}^ny_i\bigg)= S S x y = i = 1 ∑ n x i y i − n 1 ( i = 1 ∑ n x i ) ( i = 1 ∑ n y i ) = = 1973 − 63 ⋅ 245 7 = − 232 =1973-{63\cdot 245\over 7}=-232 = 1973 − 7 63 ⋅ 245 = − 232
m = S S x y S x x = − 232 56 = − 29 7 ≈ − 4.142857 m=\dfrac{SS_{xy}}{S_{xx}}=\dfrac{-232}{56}=-\dfrac{29}{7}\approx-4.142857 m = S xx S S x y = 56 − 232 = − 7 29 ≈ − 4.142857
b = y ˉ − m ⋅ x ˉ = 35 − ( − 29 7 ) ⋅ 9 = b=\bar{y}-m\cdot \bar{x}=35-(-\dfrac{29}{7})\cdot9= b = y ˉ − m ⋅ x ˉ = 35 − ( − 7 29 ) ⋅ 9 = = 506 7 ≈ 72.285714 =\dfrac{506}{7}\approx72.285714 = 7 506 ≈ 72.285714 The equation of regression line
y = − 29 7 x + 504 7 y=-\dfrac{29}{7}x+\dfrac{504}{7} y = − 7 29 x + 7 504
P r o c e s s e d r e q u e s t s = − 29 7 ( D a t a S i z e ) + 504 7 Processed\ requests=-\dfrac{29}{7}(Data\ Size)+\dfrac{504}{7} P rocesse d re q u es t s = − 7 29 ( D a t a S i ze ) + 7 504
y = − 4.142857 x + 72.285714 y=-4.142857x+72.285714 y = − 4.142857 x + 72.285714
b.
It is obtained that, there is negative linear relationship between “Data size (x)” and “Processed requests (y)”. Thus, as the number of processed requests increased, the data size decreases.
If Data size increases by 1 gigabyte, then the number of processed requests per hour decreases by 4.142857.
The processing request on the size of incoming data of size 0 gigabytes is 72.285714. 72.285714. 72.285714.
c.
x y x y x 2 y 2 40 6 240 1600 36 55 7 385 3025 49 50 7 400 2500 49 41 8 328 1681 64 17 100 170 289 100 26 10 260 676 100 16 15 240 256 225 S u m = 245 63 1973 10027 623 \def\arraystretch{1.5}
\begin{array}{c:c:c:c:c:c}
& x & y & xy & x^2 & y^2 \\ \hline
& 40 & 6 & 240 & 1600 & 36\\
\hdashline
& 55 & 7 & 385 & 3025 & 49\\
\hdashline
& 50 & 7 & 400 & 2500 & 49\\
\hdashline
& 41 & 8 & 328 & 1681 & 64\\
\hdashline
& 17 & 100 & 170 & 289 & 100\\
\hdashline
& 26 & 10 & 260 & 676 & 100\\
\hdashline
& 16 & 15 & 240 & 256 & 225 \\
\hdashline
Sum=& 245 & 63 & 1973 & 10027 & 623
\end{array} S u m = x 40 55 50 41 17 26 16 245 y 6 7 7 8 100 10 15 63 x y 240 385 400 328 170 260 240 1973 x 2 1600 3025 2500 1681 289 676 256 10027 y 2 36 49 49 64 100 100 225 623
x ˉ = 1 n ∑ i = 1 n x i = 245 7 = 35 \bar{x}={1\over n}\displaystyle\sum_{i=1}^nx_i={245\over 7}=35 x ˉ = n 1 i = 1 ∑ n x i = 7 245 = 35
y ˉ = 1 n ∑ i = 1 n y i = 63 7 = 9 \bar{y}={1\over n}\displaystyle\sum_{i=1}^ny_i={63\over 7}=9 y ˉ = n 1 i = 1 ∑ n y i = 7 63 = 9
S S x x = ∑ i = 1 n x i 2 − 1 n ( ∑ i = 1 n x i ) 2 = SS_{xx}=\displaystyle\sum_{i=1}^nx_i^2-{1\over n}\bigg(\displaystyle\sum_{i=1}^nx_i\bigg)^2 = S S xx = i = 1 ∑ n x i 2 − n 1 ( i = 1 ∑ n x i ) 2 = = 10027 − 24 5 2 7 = 1452 =10027-{245^2\over 7}=1452 = 10027 − 7 24 5 2 = 1452
S S y y = ∑ i = 1 n y i 2 − 1 n ( ∑ i = 1 n y i ) 2 = SS_{yy}=\displaystyle\sum_{i=1}^ny_i^2-{1\over n}\bigg(\displaystyle\sum_{i=1}^ny_i\bigg)^2 = S S yy = i = 1 ∑ n y i 2 − n 1 ( i = 1 ∑ n y i ) 2 = = 623 − 6 3 2 7 = 56 =623-{63^2\over 7}=56 = 623 − 7 6 3 2 = 56
m = S S x y S x x = − 232 1452 = − 58 363 ≈ − 0.159780 m=\dfrac{SS_{xy}}{S_{xx}}=\dfrac{-232}{1452}=-\dfrac{58}{363}\approx-0.159780 m = S xx S S x y = 1452 − 232 = − 363 58 ≈ − 0.159780
b = y ˉ − m ⋅ x ˉ = 9 − ( − 58 363 ) ⋅ 35 = b=\bar{y}-m\cdot \bar{x}=9-(-\dfrac{58}{363})\cdot35= b = y ˉ − m ⋅ x ˉ = 9 − ( − 363 58 ) ⋅ 35 = = 5297 363 ≈ 14.592287 =\dfrac{5297}{363}\approx14.592287 = 363 5297 ≈ 14.592287 The equation of regression line
y = − 58 363 x + 5297 363 y=-\dfrac{58}{363}x+\dfrac{5297}{363} y = − 363 58 x + 363 5297
D a t a s i z e = − 58 363 ( P r o c e s s e d r e q u e s t s ) + 1263 121 Data\ size=-\dfrac{58}{363}(Processed\ requests)+\dfrac{1263}{121} D a t a s i ze = − 363 58 ( P rocesse d re q u es t s ) + 121 1263
y = − 0.159780 x + 14.592287 y=-0.159780x+14.592287 y = − 0.159780 x + 14.592287 We can take Data Size as dependent variable.
d.
r = S S x y S S x x S S y y = − 232 56 1452 ≈ − 0.8136 r=\dfrac{SS_{xy}}{\sqrt{SS_{xx}}\sqrt{SS_{yy}}}=\dfrac{-232}{\sqrt{56}\sqrt{1452}}\approx-0.8136 r = S S xx S S yy S S x y = 56 1452 − 232 ≈ − 0.8136
The correlation coefficient between "Data size" and " Processed request" is − 0.8136. -0.8136. − 0.8136.
Thus, there is strong negative correlation between the processed request and the size of the incoming data.
Hence this problem could be studied using correlation.
Comments