Question #128952
A computer manager needs to know how efficiency of her new computer program depends on the size of incoming data. Efficiency will be measured by the number of processed requests per hour. Applying the program to data sets of different sizes, she gets the following results:-

Data Size (gigabytes) (x)

6 7 7 8 10 10 15

Processed requests(y)

40 55 50 41 17 26 16

a. Find the equation of regression line

b. Interpret regression co-efficient and y intercept

c. Can we take Data Size as dependent variable if yes then how? If not then why? Explain.

d. Could this problem be studied using correlation if yes then how? If not then why? Explain.
1
Expert's answer
2020-08-12T17:34:22-0400

a.


xyxyx2y2640240361600755385493025750400492500841328641681101717010028910262601006761516240225256Sum=63245197362310027\def\arraystretch{1.5} \begin{array}{c:c:c:c:c:c} & x & y & xy & x^2 & y^2 \\ \hline & 6 & 40 & 240 & 36 & 1600\\ \hdashline & 7 & 55 &385 & 49 & 3025\\ \hdashline & 7 & 50 & 400 & 49 & 2500\\ \hdashline & 8 & 41 & 328 & 64 & 1681\\ \hdashline & 10 & 17 & 170 & 100 & 289\\ \hdashline & 10 & 26 & 260 & 100 & 676\\ \hdashline & 15 & 16 & 240 & 225 & 256 \\ \hdashline Sum=& 63 & 245 & 1973 & 623 & 10027 \end{array}

xˉ=1ni=1nxi=637=9\bar{x}={1\over n}\displaystyle\sum_{i=1}^nx_i={63\over 7}=9

yˉ=1ni=1nyi=2457=35\bar{y}={1\over n}\displaystyle\sum_{i=1}^ny_i={245\over 7}=35

SSxx=i=1nxi21n(i=1nxi)2=SS_{xx}=\displaystyle\sum_{i=1}^nx_i^2-{1\over n}\bigg(\displaystyle\sum_{i=1}^nx_i\bigg)^2 ==6236327=56=623-{63^2\over 7}=56

SSyy=i=1nyi21n(i=1nyi)2=SS_{yy}=\displaystyle\sum_{i=1}^ny_i^2-{1\over n}\bigg(\displaystyle\sum_{i=1}^ny_i\bigg)^2 ==1002724527=1452=10027-{245^2\over 7}=1452

SSxy=i=1nxiyi1n(i=1nxi)(i=1nyi)=SS_{xy}=\displaystyle\sum_{i=1}^nx_iy_i-{1\over n}\bigg(\displaystyle\sum_{i=1}^nx_i\bigg) \bigg(\displaystyle\sum_{i=1}^ny_i\bigg)==1973632457=232=1973-{63\cdot 245\over 7}=-232

m=SSxySxx=23256=2974.142857m=\dfrac{SS_{xy}}{S_{xx}}=\dfrac{-232}{56}=-\dfrac{29}{7}\approx-4.142857

b=yˉmxˉ=35(297)9=b=\bar{y}-m\cdot \bar{x}=35-(-\dfrac{29}{7})\cdot9==506772.285714=\dfrac{506}{7}\approx72.285714

The equation of regression line

y=297x+5047y=-\dfrac{29}{7}x+\dfrac{504}{7}

Processed requests=297(Data Size)+5047Processed\ requests=-\dfrac{29}{7}(Data\ Size)+\dfrac{504}{7}

y=4.142857x+72.285714y=-4.142857x+72.285714

b.

It is obtained that, there is negative linear relationship between “Data size (x)” and “Processed requests (y)”. Thus, as the number of processed requests increased, the data size decreases.

If Data size increases by 1 gigabyte, then the number of processed requests per hour decreases by 4.142857.

The processing request on the size of incoming data of size 0 gigabytes is 72.285714.72.285714.


c.


xyxyx2y24062401600365573853025495074002500494183281681641710017028910026102606761001615240256225Sum=24563197310027623\def\arraystretch{1.5} \begin{array}{c:c:c:c:c:c} & x & y & xy & x^2 & y^2 \\ \hline & 40 & 6 & 240 & 1600 & 36\\ \hdashline & 55 & 7 & 385 & 3025 & 49\\ \hdashline & 50 & 7 & 400 & 2500 & 49\\ \hdashline & 41 & 8 & 328 & 1681 & 64\\ \hdashline & 17 & 100 & 170 & 289 & 100\\ \hdashline & 26 & 10 & 260 & 676 & 100\\ \hdashline & 16 & 15 & 240 & 256 & 225 \\ \hdashline Sum=& 245 & 63 & 1973 & 10027 & 623 \end{array}

xˉ=1ni=1nxi=2457=35\bar{x}={1\over n}\displaystyle\sum_{i=1}^nx_i={245\over 7}=35

yˉ=1ni=1nyi=637=9\bar{y}={1\over n}\displaystyle\sum_{i=1}^ny_i={63\over 7}=9

SSxx=i=1nxi21n(i=1nxi)2=SS_{xx}=\displaystyle\sum_{i=1}^nx_i^2-{1\over n}\bigg(\displaystyle\sum_{i=1}^nx_i\bigg)^2 ==1002724527=1452=10027-{245^2\over 7}=1452

SSyy=i=1nyi21n(i=1nyi)2=SS_{yy}=\displaystyle\sum_{i=1}^ny_i^2-{1\over n}\bigg(\displaystyle\sum_{i=1}^ny_i\bigg)^2 ==6236327=56=623-{63^2\over 7}=56

m=SSxySxx=2321452=583630.159780m=\dfrac{SS_{xy}}{S_{xx}}=\dfrac{-232}{1452}=-\dfrac{58}{363}\approx-0.159780

b=yˉmxˉ=9(58363)35=b=\bar{y}-m\cdot \bar{x}=9-(-\dfrac{58}{363})\cdot35==529736314.592287=\dfrac{5297}{363}\approx14.592287

The equation of regression line


y=58363x+5297363y=-\dfrac{58}{363}x+\dfrac{5297}{363}


Data size=58363(Processed requests)+1263121Data\ size=-\dfrac{58}{363}(Processed\ requests)+\dfrac{1263}{121}

y=0.159780x+14.592287y=-0.159780x+14.592287

We can take Data Size as dependent variable.


d.


r=SSxySSxxSSyy=2325614520.8136r=\dfrac{SS_{xy}}{\sqrt{SS_{xx}}\sqrt{SS_{yy}}}=\dfrac{-232}{\sqrt{56}\sqrt{1452}}\approx-0.8136


The correlation coefficient between "Data size" and " Processed request" is 0.8136.-0.8136.

Thus, there is strong negative correlation between the processed request and the size of the incoming data.

Hence this problem could be studied using correlation.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS