a.
"\\bar{x}={1\\over n}\\displaystyle\\sum_{i=1}^nx_i={63\\over 7}=9"
"\\bar{y}={1\\over n}\\displaystyle\\sum_{i=1}^ny_i={245\\over 7}=35"
"SS_{xx}=\\displaystyle\\sum_{i=1}^nx_i^2-{1\\over n}\\bigg(\\displaystyle\\sum_{i=1}^nx_i\\bigg)^2 =""=623-{63^2\\over 7}=56"
"SS_{yy}=\\displaystyle\\sum_{i=1}^ny_i^2-{1\\over n}\\bigg(\\displaystyle\\sum_{i=1}^ny_i\\bigg)^2 =""=10027-{245^2\\over 7}=1452"
"SS_{xy}=\\displaystyle\\sum_{i=1}^nx_iy_i-{1\\over n}\\bigg(\\displaystyle\\sum_{i=1}^nx_i\\bigg) \\bigg(\\displaystyle\\sum_{i=1}^ny_i\\bigg)=""=1973-{63\\cdot 245\\over 7}=-232"
"m=\\dfrac{SS_{xy}}{S_{xx}}=\\dfrac{-232}{56}=-\\dfrac{29}{7}\\approx-4.142857"
"b=\\bar{y}-m\\cdot \\bar{x}=35-(-\\dfrac{29}{7})\\cdot9=""=\\dfrac{506}{7}\\approx72.285714"
The equation of regression line
"y=-\\dfrac{29}{7}x+\\dfrac{504}{7}""Processed\\ requests=-\\dfrac{29}{7}(Data\\ Size)+\\dfrac{504}{7}"
"y=-4.142857x+72.285714"
b.
It is obtained that, there is negative linear relationship between “Data size (x)” and “Processed requests (y)”. Thus, as the number of processed requests increased, the data size decreases.
If Data size increases by 1 gigabyte, then the number of processed requests per hour decreases by 4.142857.
The processing request on the size of incoming data of size 0 gigabytes is "72.285714."
c.
"\\bar{x}={1\\over n}\\displaystyle\\sum_{i=1}^nx_i={245\\over 7}=35"
"\\bar{y}={1\\over n}\\displaystyle\\sum_{i=1}^ny_i={63\\over 7}=9"
"SS_{xx}=\\displaystyle\\sum_{i=1}^nx_i^2-{1\\over n}\\bigg(\\displaystyle\\sum_{i=1}^nx_i\\bigg)^2 =""=10027-{245^2\\over 7}=1452"
"SS_{yy}=\\displaystyle\\sum_{i=1}^ny_i^2-{1\\over n}\\bigg(\\displaystyle\\sum_{i=1}^ny_i\\bigg)^2 =""=623-{63^2\\over 7}=56"
"m=\\dfrac{SS_{xy}}{S_{xx}}=\\dfrac{-232}{1452}=-\\dfrac{58}{363}\\approx-0.159780"
"b=\\bar{y}-m\\cdot \\bar{x}=9-(-\\dfrac{58}{363})\\cdot35=""=\\dfrac{5297}{363}\\approx14.592287"
The equation of regression line
"y=-0.159780x+14.592287"
We can take Data Size as dependent variable.
d.
The correlation coefficient between "Data size" and " Processed request" is "-0.8136."
Thus, there is strong negative correlation between the processed request and the size of the incoming data.
Hence this problem could be studied using correlation.
Comments
Leave a comment