Question #128524

If X is distributed normally with mean 12 and standard deviation 4. Find i) P(X>20) , ii) P(X<20), iii)

p(0<X<12)


1
Expert's answer
2020-08-06T17:12:52-0400

μ=12\mu = 12

σ=4\sigma = 4


Solution i) p(X>20)


p(X>20)=1p(X<20)p(X>20) = 1 - p(X<20)


Z=xμσZ = \frac{x - \mu}{\sigma} = 20124\frac{20-12}{4} = 2


p(X<20)p(X<20) = probability at Z = 2


= 0.9772

p(X>20)=10.9772p(X > 20) = 1 - 0.9772


Answer: 0.0228


Solution ii) p(X<20)


From (i) p(X<20) = 0.9772

= Probability at Z = 2


Answer: 0.9772


solution iii) p(0<X<12)

p(0<X<12)p(0<X<12) =

p(x<12)p(x<0)p(x<12) - p(x<0)


For p(X<12)


at


Z=12124=0Z = \frac{12-12}{4} = 0


p(x<12) = 0.5


For p(x<0)


at


Z=0124=3Z=\frac{0-12}{4} = -3

p(x<0) = 0.00135


P(0<x<12)=0.50.00135P(0<x<12) = 0.5 - 0.00135


Answer: 0.49865

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS