The property of a probability density function: integral over all space is equal to 1.
"f(x)=10e^{-10(x-60)},\\;x>6"
is not a probability density function, because the property fails.
Let's try to fix it. Let the probability density function be
"f(x)=10e^{-10(x-6)},\\;x>6".
Then the property succeeds:
"\\int\\limits_{-\\infty}^{\\infty} f(x) \\;dx = \\int\\limits_{6}^{\\infty}10e^{-10(x - 6)} dx=-e^{-10(x-6)}|_6^{\\infty}=0-(-1)=1"
Solution
"M(X)=\\int\\limits_{-\\infty}^{\\infty} x\\cdot f(x) \\;dx = \\int\\limits_{6}^{\\infty}10x\\cdot e^{-10(x - 6)} dx=\\\\\n=x\\cdot(-e^{-10(x-6)})|_6^{\\infty}-\\int\\limits_6^{\\infty}-e^{-10(x-6)}dx=\\\\\n=0-(-6)-0.1(e^{-10(x-6)})|_6^{\\infty}=6-(0-0.1)=6.1\\\\[0.3cm]"
"M(X^2)=\\int\\limits_{-\\infty}^{\\infty} x^2\\cdot f(x) \\;dx = \\int\\limits_{6}^{\\infty}10x^2\\cdot e^{-10(x - 6)} dx=\\\\\n= x^2\\cdot(-e^{-10(x-6)})|_6^{\\infty}-\\int\\limits_6^{\\infty}2x(-e^{-10(x-6)}) dx =\\\\\n= 0-(-36)-\\left(\\left(-0.2\\right)\\cdot\\int\\limits_{6}^{\\infty}10x\\cdot e^{-10(x - 6)} dx\\right)=36+0.2\\cdot6.1=37.22"
"D(X)=M(X^2)-M^2(X)=37.22-37.21=0.01"
Answer
Mean = 6.1
Variance = 0.01
"\\int\\limits_{6.1}^{\\infty} f(x) \\;dx = \\int\\limits_{6.1}^{\\infty}10e^{-10(x - 6)} dx=-e^{-10(x-6)}|_{6.1}^{\\infty}=0-(-e^{-1})=1\/e\\approx0.368"
Comments
Leave a comment