Solution:
a. Let's use the normalization condition
"\\int^{+\\infty}_{-\\infty}P(x)dx=1".
Then
"\\int ^{10} _{5}(x-5)\/(5h)dx+\\int ^{15} _{10}(1\/h)dx+\\int ^{20} _{15}(-(x-20)\/(5h))dx"
"=(x-5)^2\/(10h)|^{10}_{5}+x\/h|^{15}_{10}-(x-20)^2\/(10h)|^{20}_{15}"
"=5\/(2h)+5\/h+5\/(2h)=10\/h" .
"10\/h=1" =>
"h=10".
b. "P(X<30)=\\int^{30}_{-\\infty}P(x)dx=1".
c. "P(X<16)=\\int^{16}_{-\\infty}P(x)dx="
"=\\int ^{10} _{5}(x-5)\/(5h)dx+\\int ^{15} _{10}(1\/h)dx+\\int ^{16} _{15}(-(x-20)\/(5h))dx="
"=5\/(20)+5\/10-(x-20)^2\/(10h)|^{16}_{15}=1\/4+1\/2-(16\/100-25\/100)=0.84"
So, "P(X<16)=0.84"
d. If "x<15" then "P(X<x)<P(X<15)=\\int^{15}_{-\\infty}P(x)dx=\\int ^{10} _{5}(x-5)\/(5h)dx+\\int ^{15} _{10}(1\/h)dx=1\/4+1\/2=0.75"
Therefore "x>15".
If "x>20" then "P(X<x)>P(X<20)=1"
Therefore
"x<20" (1)
So, "P(X<x)=\\int^{x}_{-\\infty}P(t)dt="
"=\\int ^{10} _{5}(t-5)\/(5h)dt+\\int ^{15} _{10}(1\/h)dt+\\int ^{x} _{15}(-(t-20)\/(5h))dt="
"=1\/4+1\/2-(t-20)^2\/(10h)|^{x}_{15}=3\/4-((x-20)^2\/100-25\/100)=1-(x-20)^2\/100"
From the condition "P(X<x)=0.95" we obtain the equation
"1-(x-20)^2\/100=0.95"
"(x-20)^2\/100=0.05"
"(x-20)^2=5"
"x_1=20-\\sqrt5"
"x_2=20+\\sqrt5" - does not satisfy the condition (1).
So,
"x=20-\\sqrt5"
"x\\approx17.76"
Comments
Leave a comment