Question #127567
The talk time (in hours) on a cell phone in a month is approximated by the probability density function.

f(x) = x-5 / 5h for 5 < x < 10, 1/h for 10 less than or equal to x less than or equal to 15, - x-20 / 5h for 15 less than or equal to x less than or equal 20.

Determine the following:

a. h
b. P(X<30) Round the answers to two decimal places.
c. P(X<16.0) Round the answers to two decimal places.
d. x such that P(X<x)=0.95
1
Expert's answer
2020-07-27T18:40:31-0400

Solution:

a. Let's use the normalization condition

+P(x)dx=1\int^{+\infty}_{-\infty}P(x)dx=1.

Then

510(x5)/(5h)dx+1015(1/h)dx+1520((x20)/(5h))dx\int ^{10} _{5}(x-5)/(5h)dx+\int ^{15} _{10}(1/h)dx+\int ^{20} _{15}(-(x-20)/(5h))dx

=(x5)2/(10h)510+x/h1015(x20)2/(10h)1520=(x-5)^2/(10h)|^{10}_{5}+x/h|^{15}_{10}-(x-20)^2/(10h)|^{20}_{15}

=5/(2h)+5/h+5/(2h)=10/h=5/(2h)+5/h+5/(2h)=10/h .

10/h=110/h=1 =>


h=10h=10.

b. P(X<30)=30P(x)dx=1P(X<30)=\int^{30}_{-\infty}P(x)dx=1.


c. P(X<16)=16P(x)dx=P(X<16)=\int^{16}_{-\infty}P(x)dx=

=510(x5)/(5h)dx+1015(1/h)dx+1516((x20)/(5h))dx==\int ^{10} _{5}(x-5)/(5h)dx+\int ^{15} _{10}(1/h)dx+\int ^{16} _{15}(-(x-20)/(5h))dx=

=5/(20)+5/10(x20)2/(10h)1516=1/4+1/2(16/10025/100)=0.84=5/(20)+5/10-(x-20)^2/(10h)|^{16}_{15}=1/4+1/2-(16/100-25/100)=0.84


So, P(X<16)=0.84P(X<16)=0.84


d. If x<15x<15 then P(X<x)<P(X<15)=15P(x)dx=510(x5)/(5h)dx+1015(1/h)dx=1/4+1/2=0.75P(X<x)<P(X<15)=\int^{15}_{-\infty}P(x)dx=\int ^{10} _{5}(x-5)/(5h)dx+\int ^{15} _{10}(1/h)dx=1/4+1/2=0.75

Therefore x>15x>15.

If x>20x>20 then P(X<x)>P(X<20)=1P(X<x)>P(X<20)=1

Therefore

x<20x<20 (1)

So, P(X<x)=xP(t)dt=P(X<x)=\int^{x}_{-\infty}P(t)dt=

=510(t5)/(5h)dt+1015(1/h)dt+15x((t20)/(5h))dt==\int ^{10} _{5}(t-5)/(5h)dt+\int ^{15} _{10}(1/h)dt+\int ^{x} _{15}(-(t-20)/(5h))dt=

=1/4+1/2(t20)2/(10h)15x=3/4((x20)2/10025/100)=1(x20)2/100=1/4+1/2-(t-20)^2/(10h)|^{x}_{15}=3/4-((x-20)^2/100-25/100)=1-(x-20)^2/100

From the condition P(X<x)=0.95P(X<x)=0.95 we obtain the equation

1(x20)2/100=0.951-(x-20)^2/100=0.95

(x20)2/100=0.05(x-20)^2/100=0.05

(x20)2=5(x-20)^2=5

x1=205x_1=20-\sqrt5

x2=20+5x_2=20+\sqrt5 - does not satisfy the condition (1).

So,

x=205x=20-\sqrt5


x17.76x\approx17.76




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS