The probability that he answers the problem 3 correctly equals
"p_3={1\\over 2}"
The probability that he answers the problem 4 correctly equals
"p_4={1 \\over 2}\\cdot{2 \\over 3}+{1 \\over 2}\\cdot {1 \\over 3}={1 \\over 2}"
The probability that he answers the problem 5 correctly equals
"p_5={1 \\over 4}\\cdot{3 \\over 4}+{1 \\over 4}\\cdot {2 \\over 4}+{1 \\over 4}\\cdot{2 \\over 4}+{1 \\over 4}\\cdot {1 \\over 4}={1 \\over 2}"
Then the probability that he answers some problem correctly equals "\\dfrac{1}{2}" .
Let X= the number of questions correctly solved.
We have the binomial distribution: X"\\sim" Bin(n, p)
n=10, p="\\dfrac{1}{2}"
"P(X=5)=\\binom{10}{5}({1 \\over 2})^5(1-{1 \\over 2})^{10-5}={63 \\over 256}=0.24609375"
The probability that he answers exactly 5 out 10 problems correctly is approximately 0.246.
Comments
Leave a comment