a)95% "CI= \\bar x \u00b1z_\\alpha \\frac{s}{\\sqrt n}"
"\\bar x=\\frac{\\sum x}{n}"
="\\frac{30+27+...+31}{55}"
=26.8546
"s=\\sqrt {\\frac {(x-\\bar x)^2}{n-1}}"
="\\sqrt{\\frac{(30-26.8546)^2+(27-26.8546)^2+...+(31-26.8546)^2}{54}}"
=7.329
"CI=26.8546\u00b11.96*\\frac{7.329}{54}"
[24.9176, 28.7916]
b) we test the following null and alternative hypothesis
"H_0:\\mu=25, \\,\nH_1:\\mu \\ne 25"
The critical value is 1.96 from the z tables
The test statistic
"z=\\frac{x-\\mu}{\\frac{s}{\\sqrt n}}"
="\\frac{25-26.8546}{\\frac{7.329}{\\sqrt{55}}}" =-1.8766
If the the absolute value of the test statistic is greater than the critical value, we reject the null hypothesis
Since the absolute value of the test statistic is less than the critical value, we fail to reject the null hypothesis.
The average fuel consumption is 25 mpg with a 95% confidence level.
Comments
Leave a comment