"Let\\;\\hat p=\\frac{87}{125}=0.696, p_{0}=0.75,n=125\\\\\na) H_{0}: p \\geq 0.75\\\\\nH_{1}: p < 0.75\\\\\n Z_{\u03b1}=Z_{0.10}=1.282,\\\\\nZ=\\frac{\\hat p -p_{0}}{\\sqrt{\\frac{ p_{0}(1-p_{0})}{n}}}\\\\\n=\\frac{0.696 -0.75}{\\sqrt{\\frac{0.75(0.25)}{125}}}=-1.39\\\\\n\\text{the rejection region} :\\; Z<-1.282\\\\\n\\text{The decision is to reject}:\\; H_0\\\\\n\\text {This mean that that the actual }\\\\\n\\text{percentage is smaller than the figure. }\\\\\nb) \\text{the confidence interval for the proportion }\\\\\n\\text{can be calculated as follows:}\\\\\n \\hat p\u00b1Z_{\\frac{\u03b1}{2}}(\\sqrt{\\frac{\\hat p(1-\\hat p)}{n}}),\\\\\n Z_{\u03b1}=Z_{\\frac{0.10}{2}}=Z_{0.05}=1.65,\\\\\n \\text{ the lower limit }= 0.696-1.65(\\sqrt{\\frac{0.696(1-0.696)}{125}})\\\\\n=0.628\\\\\n \\text{ the upper limit} = 0.696+1.65(\\sqrt{\\frac{0.696(1-0.696)}{125}})\\\\\n=0.768\\\\\n\\therefore 0.628<p<0.768"
Comments
Leave a comment