a) Let X= the height of the traveller:X∼N(μ,σ2). Then Z=σX−μ∼N(0,1)
Given μ=160 cm,σ=8 cm
(i)
P(148<X<175)=P(X<175)−P(X≤148)==P(Z<8175−160)−P(Z≤8148−160)==P(Z<1.875)−P(Z≤−1.5)≈≈0.9696−0.0668=0.9028 (ii)
P(X>164)=1−P(X≤164)=1−P(Z≤8164−160)=
=1−P(Z≤0.5)≈1−0.6915=0.3085 (iii)
P(X<179)=P(Z<8179−160)=P(Z<2.375)≈≈0.9912 b) Let X= the time taken for the nearest Covid-19 ambulance team to convey a patient:
X∼N(μ,σ2). Then Z=σX−μ∼N(0,1).
Given μ=60 s,σ=8 s
(i)
P(X<50)=P(Z<850−60)=P(Z<−1.25)≈≈0.1056 200⋅0.1056≈21
(ii)
P(X>64)=1−P(Z<864−60)=1−P(Z<0.5)≈≈0.3085 0.3085⋅200=62
c) Let X= the Shelf life of a particular dairy product:X∼N(μ,σ2).
Then Z=σX−μ∼N(0,1).
Given μ=12,σ2=9
P(13<X<16)=P(X<16)−P(X≤13)=
=P(Z<316−12)−P(Z≤313−12)≈
≈P(Z<1.3333)−P(Z≤0.3333)≈
≈0.9088−0.6306=0.2782
About 27.82 % of the products last between 13 and 16 days
Comments