We will compute probabilities P(Y=1) and P(Y=−1) . Namely, using the formula for infinite geometric series (see https://en.wikipedia.org/wiki/Geometric_progression), we have:
P(Y=1)=∑k=1+∞P(X=2k)=∑k=1+∞22k1=411−411=31 ;
P(Y=−1)=∑k=1+∞P(X=2k−1)=∑k=1+∞22k−11=211−411=32 .
Using the formula for the expected value in finite case (see https://en.wikipedia.org/wiki/Expected_value#Finite_case), we get:
E[Y]=P(Y=1)−P(Y=−1)=−31≈−0.33
Answer:-0.33
Comments