"=-({1\\over 2}+{1\\over 2}\\cdot{1\\over 4}+{1\\over 2}\\cdot({1\\over 4})^2+... )+"
"+({1\\over 4}+{1\\over 4}\\cdot{1\\over 4}+{1\\over 4}\\cdot({1\\over 4})^2+... )"
We have an infinite series that is geometric
"{1\\over 4}+{1\\over 4}\\cdot{1\\over 4}+{1\\over 4}\\cdot({1\\over 4})^2+... =\\dfrac{{1\\over 4}}{1-{1\\over 4}}={1\\over 3}"
"E(Y)=-{2\\over 3}+{1\\over 3}=-{1\\over 3}"
Comments
Leave a comment