Let "X=" the number of days of consecutive days of snow beginning on April 1: "X\\sim Po(\\lambda)"
Given "\\lambda=0.6"
Let "Y=" the amount that the insurance company must pay. The possible values for "Y" would be:
"GHS 0:X=0"
"GHS\\ 1,000:X=1"
"GHS 2,000:X\u22652"
Then
"P(Y=1000)=P(X=1)={e^{-0.6}\\cdot (0.6)^1\\over 1!} \n=0.6e^{-0.6}"
"P(Y=2000)=P(X\u22652)=1\u2212P(X=0)\u2212P(X=1)="
"=1-e^{-0.6}-0.6e^{-0.6}=1-1.6e^{-0.6}"
"E(Y)=0\u22c5e^{-0.6}+1000\u22c50.6e^{-0.6}+2000\u22c5(1\u22121.6e^{-0.6})="
"=2000-2600e^{-0.6}\\approx573.089746"
"E(Y^2 )=(0)^2\u22c5e^{-0.6}+(1000)^2\u22c50.6e^{-0.6}+"
"+(2000)^2\u22c5(1\u22121.6e^{-0.6})="
"=4000000\u22125800000e^{-0.6} \n\n \u2248816892.510655"
"Var(Y)=\u03c3^ \n2\n =E(Y^ \n2\n )\u2212(E(Y))^ \n2\n \u2248"
"\u2248816892.510655\u2212(573.089746)^ 2\u2248488460.653685"
"\u03c3=\\sqrt{\\sigma^2} \u2248 488460.653685\u2248699"
The standard deviation of the amount that the insurance company will have to pay is "GHS\\ 699."
Comments
Leave a comment