∫040k(t+10)−2dt=1\int_0^{40} k(t+10)^{-2}dt=1∫040k(t+10)−2dt=1.
So, −kt+10∣t=0t=40=k10−k50=2k25=1.\frac{-k}{t+10}|^{t=40}_{t=0}=\frac{k}{10}-\frac{k}{50}=\frac{2k}{25}=1.t+10−k∣t=0t=40=10k−50k=252k=1.
Thus, k=252=12.5.k=\frac{25}{2}=12.5.k=225=12.5.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments