This is a binomial distribution case with n=9, p=0.3, p=1-0.3=0.7
P(X=x) ="{n\\choose x} p^x q^{n-x}"
a) P(X "\\geq" 4)
"={\\sum_{x=4}^{30}}0.3^x 0.7^{30-x}"
=0.2703
b) P(x=3)
"={9\\choose 3}0.3^3 0.7^6"
=0.2668
c) P(X=0)
"={9\\choose 0}0.3^0 0.7^9"
=0.0404
d) P(X"\\le" 5)
"=\\sum_{x =0}^50.3^x 0.7^{9-x}"
=0.9747
e) E(X) =np
=9*0.3=2.7
"\\approx 3 patients"
f) var(X) =npq
=9*0.3*0.7
=1.89
"\\approx 2 patients"
Comments
Leave a comment