3.
"P(0<Z<z)=0.4332""P(Z<z)-P(Z<0)=P(Z<z)-0.5=0.4332"
"P(Z<z)=0.9332"
"z\\approx1.50"
4. Let X be the sample average expenditure per customer.
Given "n=40, \\mu=85, \\sigma=9."
Since "n=40>30," then "X\\sim N(\\mu,\\sigma^2\/n)."
a)
"\\approx1-P(1.405457)\\approx0.0799"
b)
"\\approx P(-2.108185)\\approx0.0175"
(c)
"=P(Z<{85-85\\over 9\/\\sqrt{40}})-P(Z\\leq{83-85\\over 9\/\\sqrt{40}})\\approx"
"\\approx P(Z<0)-P(X\\leq-1.405457)\\approx"
"\\approx0.5-0.0799=0.4201"
5. Let X be the sample average grade/mark.
Given "n=49, \\mu=70, \\sigma=20."
Since "n=49>30," then "X\\sim N(\\mu,\\sigma^2\/n)."
a)
"=1-P(-1.75)\\approx1-0.040059\\approx0.9599"
(b)
"=P(Z<2.8)\\approx0.9974"
(c)
"=P(Z<{72-70\\over 20\/\\sqrt{49}})-P(Z\\leq{65-70\\over 20\/\\sqrt{49}})="
"=P(Z<0.7)-P(Z\\leq-1.75)\\approx"
"\\approx0.758036-0.040059\\approx0.7180"
Comments
Dear Vianne Ydelbyze Obenza, please use the panel for submitting new questions.
Find the probabilities on a standard normal curve P(-3.0
Leave a comment