n=40, sd=9, sample mean =85
"z= \\frac {x-\\mu} {\\frac {s} {\\sqrt n}}"
a) "P(X \\geq 87)"
=1-P(X<87)
P(X<87) ="\\frac {87-85}{\\frac {9}{\\sqrt {40}}}" =1.41
"\\Phi (1.41)" = 0.92073 from the tables
=1-0.92073
=0.07927
b) P(X<82)
="=\\frac {82-85}{\\frac {9}{\\sqrt {40}}}" = - 2.11
"\\Phi (-2.11)" = 0.01786 from the standard normal table
=0.01786
c) P(83<X<85)
"Z_1= \\frac {83-85}{\\frac {9}{\\sqrt {40}}}" = - 1.41
"Z_2= \\frac {85-85}{\\frac {9}{\\sqrt {40}}}" =0
"\\Phi (0) - \\Phi (-1.41)"
=0.5 -0.07927
=0.42073
Comments
Leave a comment