"\\def\\arraystretch{1.5}\n \\begin{array}{c:c}\n f(x,y) & & && x \\\\ \n & & & 1 & 2 & 3 \\\\ \\hline\n & 1 & & 0.05 & 0.05 & 0.10 \\\\\ny & 2 & & 0.05 & 0.10 & 0.35 \\\\\n & 3 & & 0.00 & 0.20 & 0.10 \\\\\n\\end{array}" a) Evaluate the marginal distribution of X
"g(x)=\\sum_yf(x, y)""g(1)=f(1, 1)+f(1,2)+f(1,3)=0.05+0.05+0.00=0.10"
"g(2)=f(2, 1)+f(2,2)+f(2,3)=0.05+0.10+0.20=0.35"
"g(3)=f(3, 1)+f(3,2)+f(3,3)=0.10+0.35+0.10=0.55"
b) Evaluate the marginal distribution of Y
"h(y)=\\sum_xf(x, y)""h(1)=f(1, 1)+f(2,1)+f(3,1)=0.05+0.05+0.10=0.20"
"h(2)=f(1, 2)+f(2,2)+f(3,2)=0.05+0.10+0.35=0.50"
"h(3)=f(1, 3)+f(2,3)+f(3,3)=0.00+0.20+0.10=0.30"
c) Find the mean of X and Y
"E(X)=1(0.10)+2(0.35)+3(0.55)=2.45"
"E(Y)=1(0.20)+2(0.50)+3(0.30)=2.1"
d) Find the variance of X and Y
"E(X^2)=1^2(0.10)+2^2(0.35)+3^2(0.55)=6.45"
"V(X)=E(X^2)-(E(X))^2=6.45-(2.45)^2=0.4475"
"E(Y^2)=1^2(0.20)+2^2(0.50)+3^2(0.30)=4.90"
"V(Y)=E(Y^2)-(E(Y))^2=4.90-(2.1)^2=0.49"
e) Find the correlation coefficient between X and Y
"E(XY)=1(1)(0.05)+1(2)(0.05)+1(3)(0.10)+""+2(1)(0.05)+2(2)(0.10)+2(3)(0.35)+""+3(1)(0.00)+3(2)(0.20)+3(3)(0.10)=5.15"
"cov_{xy}=\\sigma_{xy}=E(XY)-E(X)E(Y)=""=5.15-2.45(2.1)=0.005"
"\\rho_{XY}={\\sigma_{XY}\\over \\sigma_X \\sigma_Y}={0.005\\over\\sqrt{0.4475(0.49)}}\\approx0.0107" f) Interpret the result find in part (e).
"0<\\rho_{XY}<0.3" Very weak positive correlation.
Comments
Leave a comment