Let "x=" annual income in thousands, "y=" annual savings in thousands.
"mean: \\bar{x}={\\sum x_i\\over n}={144\\over 9}=16, \\bar{y}={\\sum y_i\\over n}={3.6\\over 9}=0.4"
"SS_{xx}=\\displaystyle\\sum_{i=1}^nx_i^2-{1\\over n}\\big(\\displaystyle\\sum_{i=1}^nx_i\\big)^2=""=2364-{(144)^2\\over 9}=60"
"SS_{yy}=\\displaystyle\\sum_{i=1}^ny_i^2-{1\\over n}\\big(\\displaystyle\\sum_{i=1}^ny_i\\big)^2=""=2.08-{(3.6)^2\\over 9}=0.64"
"SS_{xy}=\\displaystyle\\sum_{i=1}^nx_iy_i-{1\\over n}\\big(\\displaystyle\\sum_{i=1}^nx_i\\big)\\big(\\displaystyle\\sum_{i=1}^ny_i\\big)=""=63.7-{144(3.6)\\over 9}=6.1"
1) Find the equaition line y on x
"A=\\bar{y}-B\\cdot\\bar{x}=0.4-({6.1 \\over 60})(16)\\approx-1.226667"
"y=-1.226667+0.101667x"
2) Find the equaition line x on y
"N=\\bar{x}-M\\cdot\\bar{y}=16-({6.1\\over 0.64})(0.4)=12.1875"
"x=12.1875+9.53125y"
3) Find the Annual saving when Annual income is 25000.
The Annual saving is "1315."
4) Find the Annual income when Annual saving is 550.
The Annual income is "17430."
Comments
Leave a comment