"\\bar{x}={1 \\over 9}\\displaystyle\\sum_{i=1}^9x_i={215 \\over 9}\\approx23.88888889"
"\\bar{y}={1 \\over 9}\\displaystyle\\sum_{i=1}^9y_i={660 \\over 9}\\approx73.33333333"
"SS_{xx}=\\displaystyle\\sum_{i=1}^9x_i^2-{1 \\over 9}(\\displaystyle\\sum_{i=1}^9x_i)^2=""=5661-{215^2 \\over 9}\\approx524.88888889"
"SS_{yy}=\\displaystyle\\sum_{i=1}^9y_i^2-{1 \\over 9}(\\displaystyle\\sum_{i=1}^9y_i)^2=""=54150-{660^2 \\over 9}=5750"
"SS_{xy}=\\displaystyle\\sum_{i=1}^9x_iy_i-{1 \\over 9}(\\displaystyle\\sum_{i=1}^9y_i)(\\displaystyle\\sum_{i=1}^9x_i)=""=17115-{215(660)\\over 9}\\approx1348.33333333"
"B={SS_{xy} \\over SS_{xx}}={1348.33333333 \\over 524.88888889}\\approx2.5688"
"A=\\bar{y}-B\\bar{x}=73.33333333-2.5688(23.88888889)\\approx""\\approx11.9676"
We find that the regression equation is:
Calculate the pearsons correlation coefficient
"|r|=0.776121>0.7," strong correlation.
The temperature condition is highly correlated with crop harvest in the tomatoes business.
Comments
Leave a comment