"\\begin{matrix}\n & x & y & x^2 & y^2 & xy \\\\\n & 10 & 40 & 100 & 1600 & 400 \\\\\n & 15 & 50 & 225 & 2500 & 750 \\\\\n & 20 & 70 & 400 & 4900 & 1400 \\\\\n & 25 & 65 & 625 & 4225 & 1625 \\\\\n & 21 & 80 & 441 & 6400 & 1680 \\\\\n & 28 & 45 & 784 & 2025 & 1260 \\\\\n & 30 & 90 & 900 & 8100 & 2700 \\\\\n & 31 & 100 & 961 & 10000 & 3100 \\\\\n & 35 & 120 & 1225& 14400 & 4200 \\\\\n Sum= & 215 & 660 & 5661 & 54150 & 17115\n\\end{matrix}"
"SS_{xx}=\\displaystyle\\sum_{i=1}^9x_i^2-{1 \\over 9}(\\displaystyle\\sum_{i=1}^9x_i)^2=""=5661-{215^2 \\over 9}\\approx524.88888889"
"SS_{yy}=\\displaystyle\\sum_{i=1}^9y_i^2-{1 \\over 9}(\\displaystyle\\sum_{i=1}^9y_i)^2=""=54150-{660^2 \\over 9}=5750"
"SS_{xy}=\\displaystyle\\sum_{i=1}^9x_iy_i-{1 \\over 9}(\\displaystyle\\sum_{i=1}^9y_i)(\\displaystyle\\sum_{i=1}^9x_i)=""=17115-{215(660)\\over 9}\\approx1348.33333333"
"B={SS_{xy} \\over SS_{xx}}={1348.33333333 \\over 524.88888889}\\approx2.5688"
"A=\\bar{y}-B\\bar{x}=73.33333333-2.5688(23.88888889)\\approx""\\approx11.9676"
We find that the regression equation is:
Calculate the pearsons correlation coefficient
"|r|=0.776121>0.7," strong correlation
The temperature condition is highly correlated with crop harvest in the tomatoes business.
Comments
Leave a comment