x y x 2 y 2 x y 10 40 100 1600 400 15 50 225 2500 750 20 70 400 4900 1400 25 65 625 4225 1625 21 80 441 6400 1680 28 45 784 2025 1260 30 90 900 8100 2700 31 100 961 10000 3100 35 120 1225 14400 4200 S u m = 215 660 5661 54150 17115 \begin{matrix}
& x & y & x^2 & y^2 & xy \\
& 10 & 40 & 100 & 1600 & 400 \\
& 15 & 50 & 225 & 2500 & 750 \\
& 20 & 70 & 400 & 4900 & 1400 \\
& 25 & 65 & 625 & 4225 & 1625 \\
& 21 & 80 & 441 & 6400 & 1680 \\
& 28 & 45 & 784 & 2025 & 1260 \\
& 30 & 90 & 900 & 8100 & 2700 \\
& 31 & 100 & 961 & 10000 & 3100 \\
& 35 & 120 & 1225& 14400 & 4200 \\
Sum= & 215 & 660 & 5661 & 54150 & 17115
\end{matrix} S u m = x 10 15 20 25 21 28 30 31 35 215 y 40 50 70 65 80 45 90 100 120 660 x 2 100 225 400 625 441 784 900 961 1225 5661 y 2 1600 2500 4900 4225 6400 2025 8100 10000 14400 54150 x y 400 750 1400 1625 1680 1260 2700 3100 4200 17115
x ˉ = 1 9 ∑ i = 1 9 x i = 215 9 ≈ 23.88888889 \bar{x}={1 \over 9}\displaystyle\sum_{i=1}^9x_i={215 \over 9}\approx23.88888889 x ˉ = 9 1 i = 1 ∑ 9 x i = 9 215 ≈ 23.88888889 y ˉ = 1 9 ∑ i = 1 9 y i = 660 9 ≈ 73.33333333 \bar{y}={1 \over 9}\displaystyle\sum_{i=1}^9y_i={660 \over 9}\approx73.33333333 y ˉ = 9 1 i = 1 ∑ 9 y i = 9 660 ≈ 73.33333333
S S x x = ∑ i = 1 9 x i 2 − 1 9 ( ∑ i = 1 9 x i ) 2 = SS_{xx}=\displaystyle\sum_{i=1}^9x_i^2-{1 \over 9}(\displaystyle\sum_{i=1}^9x_i)^2= S S xx = i = 1 ∑ 9 x i 2 − 9 1 ( i = 1 ∑ 9 x i ) 2 = = 5661 − 21 5 2 9 ≈ 524.88888889 =5661-{215^2 \over 9}\approx524.88888889 = 5661 − 9 21 5 2 ≈ 524.88888889
S S y y = ∑ i = 1 9 y i 2 − 1 9 ( ∑ i = 1 9 y i ) 2 = SS_{yy}=\displaystyle\sum_{i=1}^9y_i^2-{1 \over 9}(\displaystyle\sum_{i=1}^9y_i)^2= S S yy = i = 1 ∑ 9 y i 2 − 9 1 ( i = 1 ∑ 9 y i ) 2 = = 54150 − 66 0 2 9 = 5750 =54150-{660^2 \over 9}=5750 = 54150 − 9 66 0 2 = 5750
S S x y = ∑ i = 1 9 x i y i − 1 9 ( ∑ i = 1 9 y i ) ( ∑ i = 1 9 x i ) = SS_{xy}=\displaystyle\sum_{i=1}^9x_iy_i-{1 \over 9}(\displaystyle\sum_{i=1}^9y_i)(\displaystyle\sum_{i=1}^9x_i)= S S x y = i = 1 ∑ 9 x i y i − 9 1 ( i = 1 ∑ 9 y i ) ( i = 1 ∑ 9 x i ) = = 17115 − 215 ( 660 ) 9 ≈ 1348.33333333 =17115-{215(660)\over 9}\approx1348.33333333 = 17115 − 9 215 ( 660 ) ≈ 1348.33333333
B = S S x y S S x x = 1348.33333333 524.88888889 ≈ 2.5688 B={SS_{xy} \over SS_{xx}}={1348.33333333 \over 524.88888889}\approx2.5688 B = S S xx S S x y = 524.88888889 1348.33333333 ≈ 2.5688
A = y ˉ − B x ˉ = 73.33333333 − 2.5688 ( 23.88888889 ) ≈ A=\bar{y}-B\bar{x}=73.33333333-2.5688(23.88888889)\approx A = y ˉ − B x ˉ = 73.33333333 − 2.5688 ( 23.88888889 ) ≈ ≈ 11.9676 \approx11.9676 ≈ 11.9676 We find that the regression equation is:
y = 11.9676 + 2.5688 x y=11.9676+2.5688x y = 11.9676 + 2.5688 x
Calculate the pearsons correlation coefficient
r = S S x y S x x S S y y ≈ 1348.33333333 524.88888889 5750 ≈ 0.776121 r={SS_{xy} \over \sqrt{S_{xx}}\sqrt{SS_{yy}}}\approx{1348.33333333\over \sqrt{524.88888889}\sqrt{5750}}\approx0.776121 r = S xx S S yy S S x y ≈ 524.88888889 5750 1348.33333333 ≈ 0.776121
∣ r ∣ = 0.776121 > 0.7 , |r|=0.776121>0.7, ∣ r ∣ = 0.776121 > 0.7 , strong correlation
The temperature condition is highly correlated with crop harvest in the tomatoes business.
Comments