Question #112630
It is argued that the temperature condition is highly correlated with crop harvest in the tomatoes business. The information from north eastern Ghana is summarized in the table below. Use the table to answer the questions that follow
Yield (crop)
40
50
70
65
80
45
90
100
120

Temperature
10
15
20
25
21
28
30
31
35

Calculate the pearsons correlation coefficient and interpret it.
Did the result support past argument?
1
Expert's answer
2020-04-28T16:32:41-0400

xyx2y2xy104010016004001550225250075020704004900140025656254225162521804416400168028457842025126030909008100270031100961100003100351201225144004200Sum=21566056615415017115\begin{matrix} & x & y & x^2 & y^2 & xy \\ & 10 & 40 & 100 & 1600 & 400 \\ & 15 & 50 & 225 & 2500 & 750 \\ & 20 & 70 & 400 & 4900 & 1400 \\ & 25 & 65 & 625 & 4225 & 1625 \\ & 21 & 80 & 441 & 6400 & 1680 \\ & 28 & 45 & 784 & 2025 & 1260 \\ & 30 & 90 & 900 & 8100 & 2700 \\ & 31 & 100 & 961 & 10000 & 3100 \\ & 35 & 120 & 1225& 14400 & 4200 \\ Sum= & 215 & 660 & 5661 & 54150 & 17115 \end{matrix}


xˉ=19i=19xi=215923.88888889\bar{x}={1 \over 9}\displaystyle\sum_{i=1}^9x_i={215 \over 9}\approx23.88888889yˉ=19i=19yi=660973.33333333\bar{y}={1 \over 9}\displaystyle\sum_{i=1}^9y_i={660 \over 9}\approx73.33333333

SSxx=i=19xi219(i=19xi)2=SS_{xx}=\displaystyle\sum_{i=1}^9x_i^2-{1 \over 9}(\displaystyle\sum_{i=1}^9x_i)^2==566121529524.88888889=5661-{215^2 \over 9}\approx524.88888889

SSyy=i=19yi219(i=19yi)2=SS_{yy}=\displaystyle\sum_{i=1}^9y_i^2-{1 \over 9}(\displaystyle\sum_{i=1}^9y_i)^2==5415066029=5750=54150-{660^2 \over 9}=5750

SSxy=i=19xiyi19(i=19yi)(i=19xi)=SS_{xy}=\displaystyle\sum_{i=1}^9x_iy_i-{1 \over 9}(\displaystyle\sum_{i=1}^9y_i)(\displaystyle\sum_{i=1}^9x_i)==17115215(660)91348.33333333=17115-{215(660)\over 9}\approx1348.33333333

B=SSxySSxx=1348.33333333524.888888892.5688B={SS_{xy} \over SS_{xx}}={1348.33333333 \over 524.88888889}\approx2.5688

A=yˉBxˉ=73.333333332.5688(23.88888889)A=\bar{y}-B\bar{x}=73.33333333-2.5688(23.88888889)\approx11.9676\approx11.9676

We find that the regression equation is:


y=11.9676+2.5688xy=11.9676+2.5688x

Calculate the pearsons correlation coefficient


r=SSxySxxSSyy1348.33333333524.8888888957500.776121r={SS_{xy} \over \sqrt{S_{xx}}\sqrt{SS_{yy}}}\approx{1348.33333333\over \sqrt{524.88888889}\sqrt{5750}}\approx0.776121



r=0.776121>0.7,|r|=0.776121>0.7, strong correlation


The temperature condition is highly correlated with crop harvest in the tomatoes business. 



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS