X=number of computers crash in a day
Assume there are n number of computers
Distribution is,
"X \\backsim binomial(n,0.05)" .
a)
"P(X=3)=\\binom{n}{3}*P^3*(1-P)^{(n-3)}\\\\\nP(X=3)=\\binom{n}{3}*0.05^3*0.95^{(n-3)}\\\\\n\\bold{P(X=3)=\\frac{n(n-1)(n-2)}{120}*0.95^{(n-3)}}\\\\"
b)
"P(X\\le 3)=\\sum_{i=0}^{3}\\binom{n}{i}*P^i*(1-P)^{(n-i)}\\\\\n\\bold{P(X\\le 3)=\\sum_{i=0}^{3}\\binom{n}{i}*0.05^i*0.95^{(n-i)}}\\\\"
c)
"P(X\\ge3)=1-P(X\\le2)\\\\\nP(X\\ge 3)=1-\\sum_{i=0}^{2}\\binom{n}{i}*P^i*(1-P)^{(n-i)}\\\\\n\\bold{P(X\\ge 3)=1-\\sum_{i=0}^{2}\\binom{n}{i}*0.05^i*0.95^{(n-i)}}\\\\"
d)
"P(3< X<6)=\\sum_{i=4}^{5}P(X=i)\\\\\nP(3< X< 6)=\\sum_{i=4}^{5}\\binom{n}{i}*P^i*(1-P)^{(n-i)}\\\\\nP(3< X< 6)=\\binom{n}{4}*0.05^4*0.95^{(n-4)}\\\\\n\\hspace{10 em}+\\binom{n}{5}*0.05^5*0.95^{(n-5)}\\\\\n\\bold{P(3< X< 6)=\\frac{n(n-1)(n-2)(n-3)}{480}*0.95^{(n-4)}}\\\\\n\\bold{\\hspace{7 em}+\\frac{n(n-1)(n-2)(n-3)(n-4)}{2400}*0.95^{(n-5)}}"
Here number of computers should be give.By substituting that value those probabilities can be found.
Comments
Leave a comment