Question #112325
On a given day, each computer in the lab has at most one crash. There is a 5% chance
that a computer has a crash during the day, independent of the performance of any
other computers in the lab. Find the probability that on any given day, there are;
(a) exactly 3 crashes
(b) at most 3 crashes
(c) at least 3 crashes
(d) more than 3 and less than 6.
1
Expert's answer
2020-04-27T19:18:10-0400

X=number of computers crash in a day

Assume there are n number of computers

Distribution is,

Xbinomial(n,0.05)X \backsim binomial(n,0.05) .

a)

P(X=3)=(n3)P3(1P)(n3)P(X=3)=(n3)0.0530.95(n3)P(X=3)=n(n1)(n2)1200.95(n3)P(X=3)=\binom{n}{3}*P^3*(1-P)^{(n-3)}\\ P(X=3)=\binom{n}{3}*0.05^3*0.95^{(n-3)}\\ \bold{P(X=3)=\frac{n(n-1)(n-2)}{120}*0.95^{(n-3)}}\\


b)

P(X3)=i=03(ni)Pi(1P)(ni)P(X3)=i=03(ni)0.05i0.95(ni)P(X\le 3)=\sum_{i=0}^{3}\binom{n}{i}*P^i*(1-P)^{(n-i)}\\ \bold{P(X\le 3)=\sum_{i=0}^{3}\binom{n}{i}*0.05^i*0.95^{(n-i)}}\\


c)

P(X3)=1P(X2)P(X3)=1i=02(ni)Pi(1P)(ni)P(X3)=1i=02(ni)0.05i0.95(ni)P(X\ge3)=1-P(X\le2)\\ P(X\ge 3)=1-\sum_{i=0}^{2}\binom{n}{i}*P^i*(1-P)^{(n-i)}\\ \bold{P(X\ge 3)=1-\sum_{i=0}^{2}\binom{n}{i}*0.05^i*0.95^{(n-i)}}\\


d)

P(3<X<6)=i=45P(X=i)P(3<X<6)=i=45(ni)Pi(1P)(ni)P(3<X<6)=(n4)0.0540.95(n4)+(n5)0.0550.95(n5)P(3<X<6)=n(n1)(n2)(n3)4800.95(n4)+n(n1)(n2)(n3)(n4)24000.95(n5)P(3< X<6)=\sum_{i=4}^{5}P(X=i)\\ P(3< X< 6)=\sum_{i=4}^{5}\binom{n}{i}*P^i*(1-P)^{(n-i)}\\ P(3< X< 6)=\binom{n}{4}*0.05^4*0.95^{(n-4)}\\ \hspace{10 em}+\binom{n}{5}*0.05^5*0.95^{(n-5)}\\ \bold{P(3< X< 6)=\frac{n(n-1)(n-2)(n-3)}{480}*0.95^{(n-4)}}\\ \bold{\hspace{7 em}+\frac{n(n-1)(n-2)(n-3)(n-4)}{2400}*0.95^{(n-5)}}


Here number of computers should be give.By substituting that value those probabilities can be found.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS