P(X=n)=(1/2)nP(X=n)=(1/2)^nP(X=n)=(1/2)n
Y={1, if x is even−1, if x is oddY=\begin{cases} 1, \ \text{if x is even} \\ -1, \ \text{if x is odd} \end{cases}Y={1, if x is even−1, if x is odd
P(Y=1)=∑n=1∞P(X=2n)=∑n=1∞(1/2)2n=∑n=1∞(1/4)n=1/41−1/4=1/3P(Y=1)=\sum \limits_{n=1}^{\infin}P(X=2n)= \sum \limits_{n=1}^{\infin} (1/2)^{2n}= \sum \limits_{n=1}^{\infin} (1/4)^{n}=\frac{1/4}{1-1/4}=1/3P(Y=1)=n=1∑∞P(X=2n)=n=1∑∞(1/2)2n=n=1∑∞(1/4)n=1−1/41/4=1/3
P(Y=−1)=1−P(Y=1)=1−1/3=2/3P(Y=-1)=1-P(Y=1)=1-1/3=2/3P(Y=−1)=1−P(Y=1)=1−1/3=2/3
E[Y]=1×P(Y=1)+(−1)×P(Y=−1)=1/3−2/3=−1/3E[Y]=1\times P(Y=1)+(-1)\times P(Y=-1)=1/3-2/3=-1/3E[Y]=1×P(Y=1)+(−1)×P(Y=−1)=1/3−2/3=−1/3
Answer: the expected value of YYY is -1/3.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments