Question #112294
A discrete random variable has pmf P(X=n)=(1/2)^n. Let Y={1, if x is even and -1 if x is odd

Find the expected value of Y.
1
Expert's answer
2020-04-27T19:20:27-0400

P(X=n)=(1/2)nP(X=n)=(1/2)^n

Y={1, if x is even1, if x is oddY=\begin{cases} 1, \ \text{if x is even} \\ -1, \ \text{if x is odd} \end{cases}

P(Y=1)=n=1P(X=2n)=n=1(1/2)2n=n=1(1/4)n=1/411/4=1/3P(Y=1)=\sum \limits_{n=1}^{\infin}P(X=2n)= \sum \limits_{n=1}^{\infin} (1/2)^{2n}= \sum \limits_{n=1}^{\infin} (1/4)^{n}=\frac{1/4}{1-1/4}=1/3

P(Y=1)=1P(Y=1)=11/3=2/3P(Y=-1)=1-P(Y=1)=1-1/3=2/3

E[Y]=1×P(Y=1)+(1)×P(Y=1)=1/32/3=1/3E[Y]=1\times P(Y=1)+(-1)\times P(Y=-1)=1/3-2/3=-1/3

Answer: the expected value of YY is -1/3.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS