Let "X=" the number of the workers agree: "X\\sim Bin(n, p)"
Given "p=0.68,n=20."
"\\sigma_X=\\sqrt{np(1-p)}=\\sqrt{20(0.68)(1-0.68)}\\approx2.086"
a. 5 or less of the workers agree
"=\\binom{20}{0}0.68^0(1-0.68)^{20-0}+\\binom{20}{1}0.68^1(1-0.68)^{20-1}+"
"+\\binom{20}{2}0.68^2(1-0.68)^{20-2}+\\binom{20}{3}0.68^3(1-0.68)^{20-3}+"
"+\\binom{20}{4}0.68^4(1-0.68)^{20-4}+\\binom{20}{5}0.68^5(1-0.68)^{20-5}\\approx"
"\\approx0.000099"
b. 10 or less of the workers agree
"+P(X=3)+P(X=4)+P(X=5)+P(X=6)+"
"+P(X=7)+P(X=8)+P(X=9)+P(X=10)\\approx"
"\\approx0.071899"
c. 15 or less of the workers agree
"-P(X=18)-P(X=19)-P(X=20)\\approx"
"\\approx1-0.182723\\approx0.817277"
Comments
Leave a comment