"a) P\\{X=1, Y=1\\}=\\frac{1}{3}\\\\\nP\\{X=1, Y=-1\\}=\\frac{1}{6}\\\\\nP\\{X=-1, Y=1\\}=\\frac{1}{6}\\\\\nP\\{X=-1, Y=-1\\}=\\frac{1}{3}\\\\\nCOV(X,Y)=M(XY)-M(X)M(Y)\\\\\nM(X)=M(Y)=0\\\\\nCOV(X,Y)=M(XY)\\\\\nP\\{XY=1\\}=\\frac{2}{3}\\\\\nP\\{XY=-1\\}=\\frac{1}{3}\\\\\nM(XY)=\\frac{1}{3}\\\\\nCOV(X,Y)=\\frac{1}{3}\\\\\nCor(X,Y)=\\frac{COV(X,Y)}{\\sqrt{D(X)D(Y)}}\\\\\nD(X)=M(X^2)-(M(X))^2\\\\\nM(X)=0\\\\\nM(X^2)=1\\\\\nD(X)=1\\\\\nD(Y)=1\\\\\nCor(X,Y)=COV(X,Y)\\\\\nCor(X,Y)=\\frac{1}{3}\\\\\nb)1)c=P\\{X=1, Y=1\\}=P\\{X=1\\}P\\{Y=1\\}=\\frac{1}{4}\\\\\nX \\text{ and } Y \\text{ are independent for }c=1\/4.\\\\\n2)\\text{Let }Cor(X,Y)=1\\\\\nCor(X,Y)=\\frac{COV(X,Y)}{\\sqrt{D(X)D(Y)}}\\\\\nCor(X,Y)=COV(X,Y)\\\\\nCOV(X,Y)=M(XY)-M(X)M(Y)\\\\\nM(XY)=1\\\\\n\\text{Hence } P\\{X=1,Y=1\\}+P\\{X=-1,Y=-1\\}=1,\\\\\nP\\{X=1,Y=-1\\}+P\\{X=-1,Y=1\\}=0.\\\\\nP\\{X=1,Y=1\\}=\\frac{1}{2}\\\\\nP\\{X=-1,Y=-1\\}=\\frac{1}{2}\\\\\nP\\{X=1,Y=-1\\}=0\\\\\nP\\{X=-1,Y=1\\}=0\\\\\n\\text{So for } c=\\frac{1}{2} \\text{ X and Y are 100 percent correlated}."
Comments
Leave a comment