"a) H_0: \\sigma=\\sigma_0=0.25, H_1: \\sigma\\neq\\sigma_0=0.25\\text{ (two-sided)}.\\\\\nn=51\\\\\ns=0.37\\\\\n\\alpha=0.05\\\\\n\\text{We will assume that the percantage of titanium has normal}\\\\\n\\text{distribution}.\\\\\n\\text{We will consider random variable } \\chi^2=\\frac{(n-1)s^2}{\\sigma_0^2}\\\\\n\\text{ where }s^2 \\text{ is random value of sample variance (corrected).}\\\\\nk=n-1=51-1=50\\text{ is degree of freedom}.\\\\\n\\chi^2_{l. cr.}=\\chi^2_{cr.}(1-\\alpha\/2;k)=\\chi^2_{cr.}(0.975;50)\\approx 32.357.\\\\\n\\chi^2_{r. cr.}=\\chi^2_{cr.}(\\alpha\/2;k)=\\chi^2_{cr.}(0.025;50)\\approx 71.42.\\\\\n\\text{Critical region:} (-\\infty, 32.357)\\cup(71.42,\\infty).\\\\\n\\chi^2=\\frac{50\\cdot (0.37)^2}{(0.25)^2}=109.52.\\\\\n\\text{Our }\\chi^2\\text{ falls into the critical region. So we reject } H_0.\\\\\nb)\\text{Here we have }\\alpha =0.95\\text{ and we should build two-sided }\\\\\n\\alpha\\text{-confidence interval for }\\sigma^2.\\\\\n\\frac{(n-1)s^2}{\\chi^2_{\\frac{1-\\alpha}{2},n-1}} \\leq\\sigma^2\\leq \\frac{(n-1)s^2}{\\chi^2_{\\frac{1+\\alpha}{2},n-1}}\\\\\n\\frac{(51-1)(0.37)^2}{\\chi^2_{0.025,51-1}} \\leq\\sigma^2\\leq \\frac{(51-1)(0.37)^2}{\\chi^2_{0.975,51-1}}\\\\\n0.096\\leq\\sigma^2\\leq 0.211\\\\\n\\sigma_0=0.25\\\\\n\\sigma_0^2=0.0625\\\\\n0.0625\\text{ does not fall into CI. So at a significance level }\\alpha=0.05 \\text{ we will reject }H_0\\text{ (two-sided hypothesis test)}."
Comments
Leave a comment