Question #109516
The percentage of titanium in an alloy used in aerospace castings is measured in 51 randomly selected
parts. The sample standard deviation is s = 0.37.
(a) Test the hypothesis H0

: σ = 0.25 versus H1

: σ ≠ 0.25 using α = 0.05. State any necessary

assumptions about the underlying distribution of the data.
(b) Explain how you could answer the question in part (a) by constructing a 95% two-sided
confidence interval for σ^2
.
1
Expert's answer
2020-04-17T17:54:53-0400

a)H0:σ=σ0=0.25,H1:σσ0=0.25 (two-sided).n=51s=0.37α=0.05We will assume that the percantage of titanium has normaldistribution.We will consider random variable χ2=(n1)s2σ02 where s2 is random value of sample variance (corrected).k=n1=511=50 is degree of freedom.χl.cr.2=χcr.2(1α/2;k)=χcr.2(0.975;50)32.357.χr.cr.2=χcr.2(α/2;k)=χcr.2(0.025;50)71.42.Critical region:(,32.357)(71.42,).χ2=50(0.37)2(0.25)2=109.52.Our χ2 falls into the critical region. So we reject H0.b)Here we have α=0.95 and we should build two-sided α-confidence interval for σ2.(n1)s2χ1α2,n12σ2(n1)s2χ1+α2,n12(511)(0.37)2χ0.025,5112σ2(511)(0.37)2χ0.975,51120.096σ20.211σ0=0.25σ02=0.06250.0625 does not fall into CI. So at a significance level α=0.05 we will reject H0 (two-sided hypothesis test).a) H_0: \sigma=\sigma_0=0.25, H_1: \sigma\neq\sigma_0=0.25\text{ (two-sided)}.\\ n=51\\ s=0.37\\ \alpha=0.05\\ \text{We will assume that the percantage of titanium has normal}\\ \text{distribution}.\\ \text{We will consider random variable } \chi^2=\frac{(n-1)s^2}{\sigma_0^2}\\ \text{ where }s^2 \text{ is random value of sample variance (corrected).}\\ k=n-1=51-1=50\text{ is degree of freedom}.\\ \chi^2_{l. cr.}=\chi^2_{cr.}(1-\alpha/2;k)=\chi^2_{cr.}(0.975;50)\approx 32.357.\\ \chi^2_{r. cr.}=\chi^2_{cr.}(\alpha/2;k)=\chi^2_{cr.}(0.025;50)\approx 71.42.\\ \text{Critical region:} (-\infty, 32.357)\cup(71.42,\infty).\\ \chi^2=\frac{50\cdot (0.37)^2}{(0.25)^2}=109.52.\\ \text{Our }\chi^2\text{ falls into the critical region. So we reject } H_0.\\ b)\text{Here we have }\alpha =0.95\text{ and we should build two-sided }\\ \alpha\text{-confidence interval for }\sigma^2.\\ \frac{(n-1)s^2}{\chi^2_{\frac{1-\alpha}{2},n-1}} \leq\sigma^2\leq \frac{(n-1)s^2}{\chi^2_{\frac{1+\alpha}{2},n-1}}\\ \frac{(51-1)(0.37)^2}{\chi^2_{0.025,51-1}} \leq\sigma^2\leq \frac{(51-1)(0.37)^2}{\chi^2_{0.975,51-1}}\\ 0.096\leq\sigma^2\leq 0.211\\ \sigma_0=0.25\\ \sigma_0^2=0.0625\\ 0.0625\text{ does not fall into CI. So at a significance level }\alpha=0.05 \text{ we will reject }H_0\text{ (two-sided hypothesis test)}.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS