"\\mu_m=797\\\\\n\\mu_w=660\\\\\n\\sigma_m=482\\\\\n\\sigma_w=414\\\\\nn_m=40\\\\\nn_w=35"
We should find "P\\{\\overline{x}_m-\\overline{x}_w\\geq 100\\}=1-P\\{\\overline{x}_m-\\overline{x}_w< 100\\}."
"\\overline{x}=\\overline{x}_m-\\overline{x}_w\\text{ is random variable}.\\\\\n\\mu=M(\\overline{x}_m-\\overline{x}_w)=M(\\overline{x}_m)-M(\\overline{x}_w)=\\mu_m-\\mu_w=\\\\\n=797-660=137\\text{ (here we used the theorem } \\mu_{\\overline{x}}=\\mu)."
Random variables "\\overline{x}_m" and "\\overline{x}_w" are independent. So "D(\\overline{x}_m-\\overline{x}_w)=D(\\overline{x}_m)+D(\\overline{x}_w)=482^2+414^2=\\\\\n=403720.\\\\\n\\sigma=\\sigma(\\overline{x}_m-\\overline{x}_w)=\\sqrt{403720}.\\\\\nn=n_m+n_w=40+35=75.\\\\\n\\text{As } n\\geq 30\\text{ we can apply the consequence of Central Limit Theorem.}\\\\\n\\text{We will consider random variable } Z=\\frac{\\overline{x}-\\mu}{\\sigma\/\\sqrt{n}}.\\\\\nZ\\text{ will be asymptotically normal:}\\\\\n\\lim_{n\\rightarrow\\infty}P\\{Z\\leq z\\}=\\frac{1}{\\sqrt{2\\pi}}\\int_{-\\infty}^ze^{-\\frac{t^2}{2}}dt.\\\\\n\\text{So } P\\{\\overline{x}<100\\}=P\\{Z<\\frac{100-\\mu}{\\sigma\/\\sqrt{n}}\\}=P\\{Z<\\frac{100-137}{\\sqrt{403720}\/\\sqrt{75}}\\}=P\\{Z<-0.5043\\}\\approx 0.3070.\\\\\nP\\{\\overline{x}\\geq 100\\}=1-P\\{\\overline{x}<100\\}\\approx 1-0.3070=0.693."
Comments
Leave a comment