Answer to Question #109498 in Statistics and Probability for Ibrahim

Question #109498
Mean Standard Deviation
Men 797 482
Women 660 414

Use these estimates as the mean m and standard deviation s for the U.S. populations for these age
groups. If we take a random sample of 40 men and 35 women, what is the probability of obtaining a
difference between sample means of 100 mg or more?
1
Expert's answer
2020-04-16T18:03:03-0400

μm=797μw=660σm=482σw=414nm=40nw=35\mu_m=797\\ \mu_w=660\\ \sigma_m=482\\ \sigma_w=414\\ n_m=40\\ n_w=35

We should find P{xmxw100}=1P{xmxw<100}.P\{\overline{x}_m-\overline{x}_w\geq 100\}=1-P\{\overline{x}_m-\overline{x}_w< 100\}.


x=xmxw is random variable.μ=M(xmxw)=M(xm)M(xw)=μmμw==797660=137 (here we used the theorem μx=μ).\overline{x}=\overline{x}_m-\overline{x}_w\text{ is random variable}.\\ \mu=M(\overline{x}_m-\overline{x}_w)=M(\overline{x}_m)-M(\overline{x}_w)=\mu_m-\mu_w=\\ =797-660=137\text{ (here we used the theorem } \mu_{\overline{x}}=\mu).

Random variables xm\overline{x}_m and xw\overline{x}_w are independent. So D(xmxw)=D(xm)+D(xw)=4822+4142==403720.σ=σ(xmxw)=403720.n=nm+nw=40+35=75.As n30 we can apply the consequence of Central Limit Theorem.We will consider random variable Z=xμσ/n.Z will be asymptotically normal:limnP{Zz}=12πzet22dt.So P{x<100}=P{Z<100μσ/n}=P{Z<100137403720/75}=P{Z<0.5043}0.3070.P{x100}=1P{x<100}10.3070=0.693.D(\overline{x}_m-\overline{x}_w)=D(\overline{x}_m)+D(\overline{x}_w)=482^2+414^2=\\ =403720.\\ \sigma=\sigma(\overline{x}_m-\overline{x}_w)=\sqrt{403720}.\\ n=n_m+n_w=40+35=75.\\ \text{As } n\geq 30\text{ we can apply the consequence of Central Limit Theorem.}\\ \text{We will consider random variable } Z=\frac{\overline{x}-\mu}{\sigma/\sqrt{n}}.\\ Z\text{ will be asymptotically normal:}\\ \lim_{n\rightarrow\infty}P\{Z\leq z\}=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^ze^{-\frac{t^2}{2}}dt.\\ \text{So } P\{\overline{x}<100\}=P\{Z<\frac{100-\mu}{\sigma/\sqrt{n}}\}=P\{Z<\frac{100-137}{\sqrt{403720}/\sqrt{75}}\}=P\{Z<-0.5043\}\approx 0.3070.\\ P\{\overline{x}\geq 100\}=1-P\{\overline{x}<100\}\approx 1-0.3070=0.693.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment