Define the random variable X - the number of the target it will kill
p=0.002, n=1750
Then X∽Binomial(n,p)
For Binomial distribution we have: P(X=k)=(kn)pk(1−p)n−k
a) P(X=0) - the probability that it will kill none of the target
P(X=0)=(01750)×0.0020×0.9981750≈0.03
b) P(X≤3) - the probability that it will kill at most 3 targets
P(X≤3)=P(X=0)+P(X=1)+P(X=2)+P(X=3)=(01750)×0.0020×0.9981750+(11750)×0.0021×0.9981749+(21750)×0.0022×0.9981748+(31750)×0.0023×0.9981747≈0.46
c) P(5≤X≤7) - the probability that it will kill between 5 to 7 targets
P(5≤X≤7)=P(X=5)+P(X=6)+P(X=7)=(51750)×0.0025×0.9981745+(61750)×0.0026×0.9981744+(71750)×0.0027×0.9981743≈0.235
Answer: a) 0.03 b) 0.46 c) 0.235
Comments