Define the random variable "X" - the number of the target it will kill
"p=0.002, \\ n=1750"
Then "X \\backsim \\text{Binomial}(n,p)"
For Binomial distribution we have: "P(X=k) =\\binom{n}{k}p^k(1-p)^{n-k}"
a) "P(X=0)" - the probability that it will kill none of the target
"P(X=0)=\\binom{1750}{0}\\times 0.002^0\\times 0.998^{1750}\\approx 0.03"
b) "P(X\\leq 3)" - the probability that it will kill at most 3 targets
"P(X\\leq 3)=P(X=0)+P(X=1)+P(X=2)+P(X=3)= \\binom{1750}{0}\\times 0.002^0\\times 0.998^{1750}+ \\binom{1750}{1}\\times 0.002^1\\times 0.998^{1749}+ \\binom{1750}{2}\\times 0.002^2\\times 0.998^{1748}+ \\binom{1750}{3}\\times 0.002^3\\times 0.998^{1747}\\approx 0.46"
c) "P(5\\leq X\\leq 7)" - the probability that it will kill between 5 to 7 targets
"P(5\\leq X\\leq 7)=P(X=5)+P(X=6)+P(X=7)= \\binom{1750}{5}\\times 0.002^5\\times 0.998^{1745}+ \\binom{1750}{6}\\times 0.002^6\\times 0.998^{1744}+ \\binom{1750}{7}\\times 0.002^7\\times 0.998^{1743}\\approx 0.235"
Answer: a) 0.03 b) 0.46 c) 0.235
Comments
Leave a comment