"a. n=40, \\mu=178.4, \\sigma=7.59."
b. We use the consequence of the Central Limit Theorem:
Suppose that the population from which samples are taken has a probability
distribution with mean "\\mu" and variance "\\sigma^2" that is not necessarily a normal
distribution. Then the standardised variable associated with "\\overline{X}", given by "Z=\\frac{\\overline{X}-\\mu}{\\sigma\\sqrt{n}}" is asymptotically normal, i. e. "\\lim_{n\\rightarrow\\infty} P\\{Z\\leq z\\}=\\frac{1}{\\sqrt{2\\pi}}\\int_{-\\infty}^ze^{-\\frac{t^2}{2}}dt."
Here "n=40>30". Sample size is rather big and we can use this consequence. "c. P\\{178\\leq\\overline{X}\\leq180\\}=F(180)-F(178)=\\Phi(\\frac{180-178.4}{(7.59)\\sqrt{40}})-\\Phi(\\frac{178-178.4}{(7.59)\\sqrt{40}})=0.0166\\text{ where } F(x)=\\frac{1}{\\sqrt{2\\pi}\\sqrt{40}(7.59)}\\int_{-\\infty}^{x}e^{-\\frac{(t-178.4)^2}{2\\cdot 40\\cdot(7.59)^2}}dt, \\\\\n\\Phi(x)=\\frac{1}{\\sqrt{2\\pi}}\\int_{-\\infty}^{x}e^{-\\frac{t^2}{2}}dt."
Comments
Leave a comment