Let "X=" the number of candidates passing the test: "X\\sim Bin(n, p)."
"P(X=x)=\\binom{n}{x}p^x(1-p)^{n-x}" Given that "p=0.875, n=14"
"\\def\\arraystretch{1.5}\n \\begin{array}{c:c}\n x & P(X=x) \\\\ \\hline\n 0 & 2.27\\times10^{-13} \\\\ \\hline\n 1 & 2.23\\times10^{-11} \\\\ \\hline\n 2 & 1.01\\times10^{-9} \\\\ \\hline\n 3 & 2.84\\times10^{-8} \\\\ \\hline\n 4 & 5.47\\times10^{-7} \\\\ \\hline\n 5 & 7.65\\times10^{-6} \\\\ \\hline\n 6 & 8.03\\times10^{-5} \\\\ \\hline\n 7 & 6.43\\times10^{-4} \\\\ \\hline\n 8 & 0.003936 \\\\ \\hline\n 9 & 0.018369\\\\ \\hline\n 10 & 0.064292\\\\ \\hline\n 11 & 0.163652\\\\ \\hline\n 12 & 0.286390 \\\\ \\hline\n 13 & 0.308420 \\\\ \\hline\n 14 & 0.154210 \\\\ \\hline\n\\end{array}" (a) Most likely, 13 candidates would pass the test in a session. The probability is "0.308420."
(b) The probability that more than 10 candidates in a session can pass the test is
"P(X>10)=P(X=11)+P(X=12)+""+P(X=13)+P(X=14)\\approx""\\approx0.163652+0.286390+0.308420+0.154210\\approx""\\approx0.912672" (c)
"E(X)=np=14(0.875)=125.25"
"Var(X)=\\sigma^2=np(1-p)=14(0.875)(1-0.875)=1.53125"
"\\sigma=\\sqrt{\\sigma^2}=\\sqrt{1.53125}\\approx1.23744"d)
(i)
"E(Y)=400(14)(1-0.875)=\\$700"
(ii)
"Var(Y)=\\sigma_Y^2=(400)^2(14)(1-0.875)(0.875)=245000"
"\\sigma_Y=\\sqrt{245000}=\\$494.97"
Comments
Leave a comment