Let "X=" the number of defective items: "X\\sim Bin(n, p)"
Given that "p=0.20, n=10"
a. The expected number of good items
b. Probability that none is defective
c. Probability that at least 3 are defective
"=1-\\binom{10}{0}0.2^0(1-0.2)^{10-2}-\\binom{10}{1}0.2^1(1-0.2)^{10-1}-"
"-\\binom{10}{2}0.2^2(1-0.2)^{10-2}=1-0.1073741824-"
"-0.268435456-0.301989888=0.3222004736\\approx"
"\\approx0.3222"
Comments
Leave a comment