a. Find the value of C.
b. Find the mean of X.
c. Find the 2nd Quartile of X.
d. Also, find the standard deviation of X.
1
Expert's answer
2020-04-03T17:14:28-0400
a)∫−∞∞f(x)dx=1∫0∞Cxe−2xdx=1∫0∞xe−2xdx=(u=x;dv=e−2x;du=dx;v=−2e−2x)=−2xe−2x∣∣0∞+2∫0∞e−2xdx=2(−2)e−2x∣∣0∞=4.C=41b)MX=∫−∞∞xf(x)dx=∫0∞41x2e−2xdx.∫0∞x2e−2xdx=(u=x2;dv=e−2x;du=2xdx;v=−2e−2x)=−2x2e−2x∣∣0∞+4∫0∞xe−2xdx=0+4⋅4=16.MX=4116=4.d)DX=MX2−(MX)2MX2=∫0∞41x3e−2xdx=41⋅6⋅16=24.DX=24−42=8σX=22.с)F(x)=∫−∞xp(t)dtF(x)=∫0x41te−2tdtP{X≤Q2}=0.5=F(Q2)∫0Q2te−2tdt=−2Q2e−2Q2−4e−2Q2+4 (by parts).F(Q2)=−21Q2e−2Q2−e−2Q2+1.−21Q2e−2Q2−e−2Q2+1=21.−21Q2e−2Q2−e−2Q2=−21.e−2Q2(21Q2+1)=21.2e−2Q2(21Q2+1)=1.ln2e−2Q2+ln(21Q2+1)=0.ln2−2Q2+ln(21Q2+1)=0.ln(Q2+2)=2Q2.ln(Q2+2)2=Q2.ln(Q2+2)2=lneQ2.lneQ2(Q2+2)2=0.eQ2(Q2+2)2=1.(Q2+2)2=eQ2.We have 3 solutions of this equation (if we look at the graphs of (x+2)^2 and e^x). Two of them are negative and one is positive. But in our case Q2>0.
Comments
Dear Sadee, You are welcome. We are glad to be helpful. If you liked our service, please press a like-button beside the answer field. Thank you!
Thank you so much❤️