Question #107523
here the pmf:

f(x)={ cxe^x/2 ;x>0
0 ;x<=0


a. Find the value of C.
b. Find the mean of X.
c. Find the 2nd Quartile of X.
d. Also, find the standard deviation of X.
1
Expert's answer
2020-04-03T17:14:28-0400

a)f(x)dx=10Cxex2dx=10xex2dx=(u=x;dv=ex2;du=dx;v=2ex2)=2xex20+20ex2dx=2(2)ex20=4.C=14b)MX=xf(x)dx=014x2ex2dx.0x2ex2dx=(u=x2;dv=ex2;du=2xdx;v=2ex2)=2x2ex20+40xex2dx=0+44=16.MX=1416=4.d)DX=MX2(MX)2MX2=014x3ex2dx=14616=24.DX=2442=8σX=22.с)F(x)=xp(t)dtF(x)=0x14tet2dtP{XQ2}=0.5=F(Q2)0Q2tet2dt=2Q2eQ224eQ22+4 (by parts).F(Q2)=12Q2eQ22eQ22+1.12Q2eQ22eQ22+1=12.12Q2eQ22eQ22=12.eQ22(12Q2+1)=12.2eQ22(12Q2+1)=1.ln2eQ22+ln(12Q2+1)=0.ln2Q22+ln(12Q2+1)=0.ln(Q2+2)=Q22.ln(Q2+2)2=Q2.ln(Q2+2)2=lneQ2.ln(Q2+2)2eQ2=0.(Q2+2)2eQ2=1.(Q2+2)2=eQ2.a) \int_{-\infty}^{\infty}f(x)dx=1\\ \int_{0}^{\infty}Cxe^{-\frac{x}{2}}dx=1\\ \int_{0}^{\infty}xe^{-\frac{x}{2}}dx=( u=x; dv=e^{-\frac{x}{2}}; du=dx; v=-2e^{-\frac{x}{2}})=\\ -2xe^{-\frac{x}{2}}\bigg|^{\infty}_{0}+2\int_{0}^{\infty}e^{-\frac{x}{2}}dx=2(-2)e^{-\frac{x}{2}}\bigg|^{\infty}_{0}=4.\\ C=\frac{1}{4}\\ b) MX= \int_{-\infty}^{\infty}xf(x)dx= \int_{0}^{\infty}\frac{1}{4}x^2e^{-\frac{x}{2}}dx.\\ \int_{0}^{\infty}x^2e^{-\frac{x}{2}}dx=(u=x^2; dv=e^{-\frac{x}{2}}; du=2xdx; v=-2e^{-\frac{x}{2}})=-2x^2e^{-\frac{x}{2}}\bigg|^{\infty}_{0}+4\int_{0}^{\infty}xe^{-\frac{x}{2}}dx=0+4\cdot 4=16.\\ MX=\frac{1}{4}16=4.\\ d) DX=MX^2-(MX)^2\\ MX^2=\int_{0}^{\infty}\frac{1}{4}x^3e^{-\frac{x}{2}}dx=\frac{1}{4}\cdot 6\cdot 16=24.\\ DX=24-4^2=8\\ \sigma X=2\sqrt{2}.\\ с) F(x)=\int_{-\infty}^{x}p(t)dt\\ F(x)=\int_{0}^{x}\frac{1}{4}te^{-\frac{t}{2}}dt\\ P\{X\leq Q_2\}=0.5=F(Q_2)\\ \int_{0}^{Q_2}te^{-\frac{t}{2}}dt=-2Q_2e^{-\frac{Q_2}{2}}-4e^{-\frac{Q_2}{2}}+4 \text{ (by parts)}.\\ F(Q_2)=-\frac{1}{2}Q_2e^{-\frac{Q_2}{2}}-e^{-\frac{Q_2}{2}}+1.\\ -\frac{1}{2}Q_2e^{-\frac{Q_2}{2}}-e^{-\frac{Q_2}{2}}+1=\frac{1}{2}.\\ -\frac{1}{2}Q_2e^{-\frac{Q_2}{2}}-e^{-\frac{Q_2}{2}}=-\frac{1}{2}.\\ e^{-\frac{Q_2}{2}}(\frac{1}{2}Q_2+1)=\frac{1}{2}.\\ 2e^{-\frac{Q_2}{2}}(\frac{1}{2}Q_2+1)=1.\\ \ln 2e^{-\frac{Q_2}{2}}+\ln (\frac{1}{2}Q_2+1)=0.\\ \ln 2-\frac{Q_2}{2}+\ln (\frac{1}{2}Q_2+1)=0.\\ \ln (Q_2+2)=\frac{Q_2}{2}.\\ \ln (Q_2+2)^2=Q_2.\\ \ln (Q_2+2)^2=\ln e^{Q_2}.\\ \ln\frac{(Q_2+2)^2}{e^{Q_2}}=0.\\ \frac{(Q_2+2)^2}{e^{Q_2}}=1.\\ (Q_2+2)^2=e^{Q_2}.We have 3 solutions of this equation (if we look at the graphs of (x+2)^2 and e^x). Two of them are negative and one is positive. But in our case Q2>0.Q_2>0.

Using numerical methods we find that Q23.3567.Q_2\approx 3.3567.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

Assignment Expert
08.04.20, 19:03

Dear Sadee, You are welcome. We are glad to be helpful. If you liked our service, please press a like-button beside the answer field. Thank you!

Sadee
04.04.20, 09:12

Thank you so much❤️

LATEST TUTORIALS
APPROVED BY CLIENTS