Question #106181
A mail-order firm has a circular that elicits a 10 percent response rate. Suppose 20 of the circulars are mailed as a market test in a new geographic area. Assuming that the 10 percent response rate is applicable in the new area, determine the probabilities of the following events:
(a) no one responds, (b) exactly two people respond, (c) a majority of the people respond, (d) less than 20 percent of the people respond.
1
Expert's answer
2020-03-21T15:59:16-0400

Let X=X= the number of people respond: XB(n;p)X\sim B(n;p)


P(X=x)=(nx)px(1p)nxP(X=x)=\binom{n}{x}p^x(1-p)^{n-x}

Given that p=0.1,n=20p=0.1, n=20

(a) The probability of no one responds is


P(X=0)=(200)0.10(10.1)200=0.920P(X=0)=\binom{20}{0}0.1^0(1-0.1)^{20-0}=0.9^{20}\approx0.121577\approx0.121577

(b) The probability of exactly two people respond is


P(X=2)=(202)0.12(10.1)202=190(0.1)2(0.9)18P(X=2)=\binom{20}{2}0.1^2(1-0.1)^{20-2}=190(0.1)^2(0.9)^{18}\approx0.285180\approx0.285180

(c) The probability of a majority of the people respond is


P(X>10)=1P(X10)=1P(X=0)P(X>10)=1-P(X\leq10)=1-P(X=0)-P(X=1)P(X=2)P(X=3)-P(X=1)-P(X=2)-P(X=3)-P(X=4)P(X=5)P(X=6)-P(X=4)-P(X=5)-P(X=6)-P(X=7)P(X=8)P(X=9)-P(X=7)-P(X=8)-P(X=9)-P(X=10)=1(200)0.10(10.1)200-P(X=10)=1-\binom{20}{0}0.1^0(1-0.1)^{20-0}-

(201)0.11(10.1)201(202)0.12(10.1)202-\binom{20}{1}0.1^1(1-0.1)^{20-1}-\binom{20}{2}0.1^2(1-0.1)^{20-2}-

(203)0.13(10.1)203(204)0.14(10.1)204-\binom{20}{3}0.1^3(1-0.1)^{20-3}-\binom{20}{4}0.1^4(1-0.1)^{20-4}-

(205)0.15(10.1)205(206)0.16(10.1)206-\binom{20}{5}0.1^5(1-0.1)^{20-5}-\binom{20}{6}0.1^6(1-0.1)^{20-6}-

(207)0.17(10.1)207(208)0.18(10.1)208-\binom{20}{7}0.1^7(1-0.1)^{20-7}-\binom{20}{8}0.1^8(1-0.1)^{20-8}-

(209)0.19(10.1)209(2010)0.110(10.1)2010<-\binom{20}{9}0.1^9(1-0.1)^{20-9}-\binom{20}{10}0.1^{10}(1-0.1)^{20-10}<

<0.0000010<0.000001\approx0

(d) The probability of less than 20 percent of the people respond is


20(0.2)=420(0.2)=4


P(X<4)=P(X=0)+P(X=1)+P(X<4)=P(X=0)+P(X=1)++P(X=2)+P(X=3)=+P(X=2)+P(X=3)=

=(200)0.10(10.1)200+(201)0.11(10.1)201+=\binom{20}{0}0.1^0(1-0.1)^{20-0}+\binom{20}{1}0.1^1(1-0.1)^{20-1}+

+(202)0.12(10.1)202+(203)0.13(10.1)203+\binom{20}{2}0.1^2(1-0.1)^{20-2}+\binom{20}{3}0.1^3(1-0.1)^{20-3}\approx


0.867047\approx0.867047


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS