Let "X=" the number of people respond: "X\\sim B(n;p)"
Given that "p=0.1, n=20"
(a) The probability of no one responds is
(b) The probability of exactly two people respond is
(c) The probability of a majority of the people respond is
"-\\binom{20}{1}0.1^1(1-0.1)^{20-1}-\\binom{20}{2}0.1^2(1-0.1)^{20-2}-"
"-\\binom{20}{3}0.1^3(1-0.1)^{20-3}-\\binom{20}{4}0.1^4(1-0.1)^{20-4}-"
"-\\binom{20}{5}0.1^5(1-0.1)^{20-5}-\\binom{20}{6}0.1^6(1-0.1)^{20-6}-"
"-\\binom{20}{7}0.1^7(1-0.1)^{20-7}-\\binom{20}{8}0.1^8(1-0.1)^{20-8}-"
"-\\binom{20}{9}0.1^9(1-0.1)^{20-9}-\\binom{20}{10}0.1^{10}(1-0.1)^{20-10}<"
"<0.000001\\approx0"
(d) The probability of less than 20 percent of the people respond is
"=\\binom{20}{0}0.1^0(1-0.1)^{20-0}+\\binom{20}{1}0.1^1(1-0.1)^{20-1}+"
"+\\binom{20}{2}0.1^2(1-0.1)^{20-2}+\\binom{20}{3}0.1^3(1-0.1)^{20-3}\\approx"
Comments
Leave a comment