Let X= the number of people respond: X∼B(n;p)
P(X=x)=(xn)px(1−p)n−x Given that p=0.1,n=20
(a) The probability of no one responds is
P(X=0)=(020)0.10(1−0.1)20−0=0.920≈≈0.121577
(b) The probability of exactly two people respond is
P(X=2)=(220)0.12(1−0.1)20−2=190(0.1)2(0.9)18≈≈0.285180
(c) The probability of a majority of the people respond is
P(X>10)=1−P(X≤10)=1−P(X=0)−−P(X=1)−P(X=2)−P(X=3)−−P(X=4)−P(X=5)−P(X=6)−−P(X=7)−P(X=8)−P(X=9)−−P(X=10)=1−(020)0.10(1−0.1)20−0−
−(120)0.11(1−0.1)20−1−(220)0.12(1−0.1)20−2−
−(320)0.13(1−0.1)20−3−(420)0.14(1−0.1)20−4−
−(520)0.15(1−0.1)20−5−(620)0.16(1−0.1)20−6−
−(720)0.17(1−0.1)20−7−(820)0.18(1−0.1)20−8−
−(920)0.19(1−0.1)20−9−(1020)0.110(1−0.1)20−10<
<0.000001≈0
(d) The probability of less than 20 percent of the people respond is
20(0.2)=4
P(X<4)=P(X=0)+P(X=1)++P(X=2)+P(X=3)=
=(020)0.10(1−0.1)20−0+(120)0.11(1−0.1)20−1+
+(220)0.12(1−0.1)20−2+(320)0.13(1−0.1)20−3≈
≈0.867047
Comments