Answer to Question #348644 in Real Analysis for Sarita bartwal

Question #348644

Prove that the sequence (fn(x)), where fn(x)= nx/(1+ nx^2) is not uniformly convergent in [-2,2]

1
Expert's answer
2022-06-07T15:20:09-0400

PROOF

Let x=0,x=0, then fn(0)=0f_{n}(0)=0 for all nNn\in\N and limnfn(0)=0\lim_{n\rightarrow\infty}f_{n}(0)=0 . If x0x\neq0 ,then limnfn(x)=limnfn(x)=limnnx1+nx2=limnnxn(1n+x2)=limnx(1n+x2)==xx2=1x.\lim_{ n \rightarrow\infty} f_{n}(x)=\lim_{n\rightarrow\infty} f_{n}(x)=\lim_{n\rightarrow\infty}\frac{nx} {1+nx^{2}}=\lim_{n\rightarrow \infty}\frac{nx} {n(\frac{1}{n}+ x^{2})}=\lim_{n\rightarrow\infty}\frac{ x} { (\frac{1}{n}+ x^{2})}=\\=\frac{x}{x^{2}}=\frac{1}{x} .

Thus fn(x)f_{n}(x) converges pointwise to

f(x)={0 if x=01x if x[2,0)(0,2]f(x)= \begin{cases} 0& \text{ if } x=0 \\ \frac{1}{x}& \text{ if } x\in [-2,0)\bigcup (0,2] \end{cases} .

Note that the functions fn(x)f_{n}(x) are continuous on the segment [2,2][-2,2] , the function ff is discontinuous. Therefore, by Theorem 1 (see bellow) fn(x)f_{n}(x) does not converge uniformly on [2,2][-2,2] .


THEOREM 1. Let (fn(x))(f_{n}(x)) be a sequence of function on AA converging uniformly to ff on AA .If each of fnf_{n} is continuous on AA , then ff is continuous on AA


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment