Apply the Squeeze Theorem:
−1≤sin(1/2x)≤1,x∈R Then
−3x2≤3x2sin(1/2x)≤3x2,x∈R We see that
x→0lim(−3x2)=0=x→0lim(3x2) Then by the Squeeze Theorem
x→0lim(3x2sin(1/2x))=0
x→0lim(3x2sin(1/2x))=0=f(0) The function f(x) is continuous on R.
Apply the Squeeze Theorem:
−1≤sin(1/2h)≤1,h∈R Then
−3h≤3hsin(1/2h)≤3h,h∈R We see that
h→0lim(−3h)=0=h→0lim(3h) Then by the Squeeze Theorem
h→0lim(hf(0+h)−f(0))=h→0lim(h3h2sin(1/2h))
=h→0lim(3hsin(1/2h))=0=f′(0) The function f(x) is derivable on R.
f′(x)=6xsin(1/2x)+3x2cos(1/2x)(−2x21)
=6xsin(1/2x)−23cos(1/2x)
x→0lim(cos(1/2x))=does not exist If xn=4πn1 then cos(1/2xn)=1,n→∞
If xn=π+2πn1 then cos(1/2xn)=0,n→∞
Therefore x→0lim(f′(x))=does not exist.
The function f′(x) is not continuous on R.
Comments