Question #348498

Check whether or not the function f, defined on R by


f(x) = { 3x^2sin(1/2x), when x≠0


{ 0 ,when x=0


is derivable on R. If it is, is f' continuous at x=0? If f is not derivable , then define a derivable function on R

1
Expert's answer
2022-06-07T00:27:54-0400

Apply the Squeeze Theorem:


1sin(1/2x)1,xR-1\le\sin(1/2x)\le1, x\in \R

Then


3x23x2sin(1/2x)3x2,xR-3x^2\le3x^2\sin(1/2x)\le3x^2, x\in \R

We see that


limx0(3x2)=0=limx0(3x2)\lim\limits_{x\to0}(-3x^2)=0=\lim\limits_{x\to0}(3x^2)

Then by the Squeeze Theorem


limx0(3x2sin(1/2x))=0\lim\limits_{x\to0}(3x^2\sin(1/2x))=0

limx0(3x2sin(1/2x))=0=f(0)\lim\limits_{x\to0}(3x^2\sin(1/2x))=0=f(0)

The function f(x)f(x) is continuous on R.\R.


Apply the Squeeze Theorem:


1sin(1/2h)1,hR-1\le\sin(1/2h)\le1, h\in \R

Then


3h3hsin(1/2h)3h,hR-3h\le3h\sin(1/2h)\le3h, h\in \R

We see that


limh0(3h)=0=limh0(3h)\lim\limits_{h\to0}(-3h)=0=\lim\limits_{h\to0}(3h)

Then by the Squeeze Theorem


limh0(f(0+h)f(0)h)=limh0(3h2sin(1/2h)h)\lim\limits_{h\to0}(\dfrac{f(0+h)-f(0)}{h})=\lim\limits_{h\to0}(\dfrac{3h^2\sin(1/2h)}{h})

=limh0(3hsin(1/2h))=0=f(0)=\lim\limits_{h\to0}(3h\sin(1/2h))=0=f'(0)

The function f(x)f(x) is derivable on R.\R.


f(x)=6xsin(1/2x)+3x2cos(1/2x)(12x2)f'(x)=6x\sin(1/2x)+3x^2\cos(1/2x)(-\dfrac{1}{2x^2})

=6xsin(1/2x)32cos(1/2x)=6x\sin(1/2x)-\dfrac{3}{2}\cos(1/2x)

limx0(cos(1/2x))=does not exist\lim\limits_{x\to0}(\cos(1/2x))=\text{does not exist}

If xn=14πnx_n=\dfrac{1}{4\pi n} then cos(1/2xn)=1,n\cos(1/2x_n)=1, n\to \infin


If xn=1π+2πnx_n=\dfrac{1}{\pi+2\pi n} then cos(1/2xn)=0,n\cos(1/2x_n)=0, n\to \infin


Therefore limx0(f(x))=does not exist.\lim\limits_{x\to0}(f'(x))=\text{does not exist}.

The function f(x)f'(x) is not continuous on R.\R.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS