Question #310913

Let fn(x)= n/(x+2n) is uniformly convergent in [0,k] , k>0

1
Expert's answer
2022-03-16T13:06:43-0400

ANSWER Let x[0,k]x\in[0,k] , then limxnx+2n=limx1xn+2=12\lim_{x\rightarrow\infty}\frac{n}{x+2n}=\lim_{x\rightarrow\infty}\frac{1}{\frac{x}{n}+2 }=\frac{1}{2} .

So, the sequence converges pointwise ( fnff_{n}\rightarrow f ) on [0,k][0,k] ,where f(x)=12f(x)=\frac{1}{2} .

fn(x)f(x)=nx+2n12=2nx2nx+2n=xx+2n\left | f_{n}(x)- f(x) \right |=\left |\frac{n}{x+2n}-\frac{1}{2} \right | =\left | \frac{2n-x-2n}{x+2n} \right | =\frac{ x}{x+2n} .

xx+2nk2n\frac{x}{x+2n}\leq\frac{k}{2n} for all x[0,k]x\in[0,k] because x+2n2nx+2n\geq2n . Therefore, 0fn(x)f(x)k2n0\leq\left | f_{n}(x)- f(x) \right | \leq\frac{k}{2n} and

0supx[0,k]fn(x)f(x)k2n.0\leq\underset{x\in[0,k] }{sup}\left | f_{n}(x)- f(x) \right | \leq\frac{k}{2n}.

limnk2n=0\lim_{n\rightarrow\infty}\frac{k}{2n }=0 . Hence

limnsupx[0,k]fn(x)f(x)=0\lim_{ n\rightarrow\infty}\underset{x\in[0,k] }{sup}\left | f_{n}(x)- f(x) \right | =0

Thus, by the definition, the sequence converges uniformly on [0,k].[0,k].





Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS