ANSWER Let x∈[0,k] , then limx→∞x+2nn=limx→∞nx+21=21 .
So, the sequence converges pointwise ( fn→f ) on [0,k] ,where f(x)=21 .
∣fn(x)−f(x)∣=∣∣x+2nn−21∣∣=∣∣x+2n2n−x−2n∣∣=x+2nx .
x+2nx≤2nk for all x∈[0,k] because x+2n≥2n . Therefore, 0≤∣fn(x)−f(x)∣≤2nk and
0≤x∈[0,k]sup∣fn(x)−f(x)∣≤2nk.
limn→∞2nk=0 . Hence
limn→∞x∈[0,k]sup∣fn(x)−f(x)∣=0
Thus, by the definition, the sequence converges uniformly on [0,k].
Comments