Answer to Question #107072 in Real Analysis for Garima Ahlawat

Question #107072
(1) check whether the function f given by f(x) = 1/(2x-4)^2 for all x belonging to ]-2,2[ is continuous in the interval ]-2,2[. Is it bounded? Justify your answer.
(2) find the values of p and q so that lim { p sinx + x(1-cosx)}/5x^3 as x tends to infinity is 1/6
1
Expert's answer
2020-03-31T11:02:41-0400

(1) Consider a function f(x)=1(2x4)2, x]2,2[f(x)=\frac{1}{(2x-4)^2}, \ x \in ]-2,2[ . The gived function is continuous on interval ]2,2[]-2,2[ as a ratio of two continuous functions on ]2,2[]-2,2[.

The function f(x)f(x) is unbounded in the interval ]2,2[]-2,2[ , because there exists a sequence xn=21n, nNx_n=2-\frac1n, \ n \in \mathbb{N}, in interval ]2,2[]-2,2[ , such that f(xn)=n24f(x_n)=\frac{n^2}{4} \to \infty for nn \to \infty.


(2) Let consider a function g(x)=psinx+x(1cosx)5x3=psinx5x3+1cosx5x2.g(x)=\frac{p\sin x+x(1-\cos x)}{5x^3}=\frac{p\sin x}{5x^3}+\frac{1-\cos x}{5x^2}. Since psinxp\sin x and 1cosx1-\cos x are bounded functions in R\mathbb{R}, then limxpsinx5x3=0\lim\limits_{x \to \infty}\frac{p\sin x}{5x^3}=0, limx1cosx5x2=0\lim\limits_{x \to \infty} \frac{1-\cos x}{5x^2}=0. Therefore limxpsinx+x(1cosx)5x3=0\lim\limits_{x \to \infty} \frac{p\sin x+x(1-\cos x)}{5x^3}=0 for every values of pp and qq. Consequently, there is no values of parameters pp and qq for which limxpsinx+x(1cosx)5x3=16.\lim\limits_{x \to \infty} \frac{p\sin x+x(1-\cos x)}{5x^3}=\frac{1}{6}.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment