There are two different kinds of the interpolating polynomials:
1)Lagrange polynomial:
L(x)=∑i=0nf(xi)∏0≤m≤n,m=ixi−xmx−xm
2)Newton polynomial:
Forward divided:
N(x)=[y0]+[y0,y1](x−x0)++[y0,y1,y2](x−x0)(x−x1)+...++[y0,...,yn](x−x0)(x−x1)...(x−xn−1)
Backward divided:
N(x)=[yn]+[yn,yn−1](x−xn)++[yn,yn−1,yn−2](x−xn)(x−xn−1)+...++[yn,yn−1,...y0](x−xn)(x−xn−1)...(x−x1)
where
yi=f(xi),i=0,1,...,n;[yi]=yi,[yi,yi+1]==xi+1−xiyi+1−yi,[yi,yi+1,yi+2]=xi+2−xi[yi+2,yi+1]−[yi+1,yi],...,[y0,...,yn]==xn−x0[yn,...,y1]−[yn−1,...,y0].
Comments
Leave a comment