Question #89653
Evaluate following double integral value taking 4 segment for both x and y direction use Simpson rule ∫(2)_(4)∫(x)_(3x^2) ((3x^2)+y) dy dx
1
Expert's answer
2019-05-15T14:15:52-0400
24x3x2(3x2+y)dydx\displaystyle\int_{2}^4\displaystyle\int_{x}^{3x^2}(3x^2+y)dydx

 We use the Composite Simpson’s rule to approximate the “inner” integral.


F(x)=x3x2(3x2+y)dyF(x)=\displaystyle\int_{x}^{3x^2}(3x^2+y)dy\approxk(x)3[f(x,c(x))+4f(x,c(x)+k(x))+\approx{k(x) \over 3}\bigg[f\Big(x, c(x)\Big)+4f\Big(x,c(x)+k(x)\Big)++2f(x,c(x)+2k(x))+4f(x,c(x)+3k(x))++2f\Big(x, c(x)+2k(x)\Big)+4f\Big(x,c(x)+3k(x)\Big)++f(x,d(x))]+f\Big(x, d(x)\Big)\bigg]

f(x,y)=3x2+yf(x, y)=3x^2+yc(x)=x, d(x)=3x2, k(x)=d(x)c(x)4=3x2x4c(x)=x,\ d(x)=3x^2,\ k(x)={d(x)-c(x) \over 4}={3x^2-x \over 4}

f(x,x)=3x2+xf\Big(x, x\Big)=3x^2+x4f(x,x+3x2x4)=12x2+4x+3x2x=15x2+3x4f\Big(x, x+{3x^2-x \over 4}\Big)=12x^2+4x+3x^2-x=15x^2+3x2f(x,x+3x2x2)=6x2+2x+3x2x=9x2+x2f\Big(x, x+{3x^2-x \over 2}\Big)=6x^2+2x+3x^2-x=9x^2+x4f(x,x+33x2x4)=12x2+4x+9x23x=21x2+x4f\Big(x, x+3\cdot{3x^2-x \over 4}\Big)=12x^2+4x+9x^2-3x=21x^2+xf(x,3x2)=3x2+3x2=6x2f\Big(x, 3x^2\Big)=3x^2+3x^2=6x^2

x3x2(3x2+y)dy\displaystyle\int_{x}^{3x^2}(3x^2+y)dy\approx

3x2x12[3x2+x+15x2+3x+9x2+x+21x2+x+6x2]=\approx{3x^2-x \over 12}\bigg[3x^2+x+15x^2+3x+9x^2+x+21x^2+x+6x^2\bigg]=

=27x46x3x22={27x^4-6x^3-x^2 \over 2}

Now we may approximate the outer integral.


24x3x2(3x2+y)dydx2427x46x3x22dx\displaystyle\int_{2}^4\displaystyle\int_{x}^{3x^2}(3x^2+y)dydx\approx\displaystyle\int_{2}^4{27x^4-6x^3-x^2 \over 2}dx\approx


h3[g(2)+4g(2+h)+2g(2+2h)+4g(2+3h)+g(4)]\approx{h \over 3}\bigg[g(2)+4g(2+h)+2g(2+2h)+4g(2+3h)+g(4)\bigg]

g(x)=27x46x3x22g(x)={27x^4-6x^3-x^2 \over 2}

h=424=12h={4-2 \over 4}={1 \over 2}

g(2)=27(2)46(2)3(2)22=190g(2)={27(2)^4-6(2)^3-(2)^2 \over 2}=190

4g(2+h)=4g(52)=427(52)46(52)3(52)22=1909.3754g(2+h)=4g({5 \over 2})=4\cdot{27({5 \over 2})^4-6({5 \over 2})^3-({5 \over 2})^2 \over 2}=1909.375

2g(2+2h)=2g(3)=227(3)46(3)3(3)22=20162g(2+2h)=2g(3)=2\cdot{27(3)^4-6(3)^3-(3)^2 \over 2}=2016

4g(2+3h)=4g(72)=427(72)46(72)3(72)22=7564.3754g(2+3h)=4g({7 \over 2})=4\cdot{27({7 \over 2})^4-6({7 \over 2})^3-({7 \over 2})^2 \over 2}=7564.375

g(4)=27(4)46(4)3(4)22=3256g(4)={27(4)^4-6(4)^3-(4)^2 \over 2}=3256

24x3x2(3x2+y)dydx\displaystyle\int_{2}^4\displaystyle\int_{x}^{3x^2}(3x^2+y)dydx\approx

16[190+1909.375+2016+7564.375+3256]\approx{1 \over 6}\bigg[190+1909.375+2016+7564.375+3256\bigg]\approx

2489.292\approx2489.292


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS