∫24∫x3x2(3x2+y)dydx We use the Composite Simpson’s rule to approximate the “inner” integral.
F(x)=∫x3x2(3x2+y)dy≈≈3k(x)[f(x,c(x))+4f(x,c(x)+k(x))++2f(x,c(x)+2k(x))+4f(x,c(x)+3k(x))++f(x,d(x))]
f(x,y)=3x2+yc(x)=x, d(x)=3x2, k(x)=4d(x)−c(x)=43x2−x
f(x,x)=3x2+x4f(x,x+43x2−x)=12x2+4x+3x2−x=15x2+3x2f(x,x+23x2−x)=6x2+2x+3x2−x=9x2+x4f(x,x+3⋅43x2−x)=12x2+4x+9x2−3x=21x2+xf(x,3x2)=3x2+3x2=6x2
∫x3x2(3x2+y)dy≈
≈123x2−x[3x2+x+15x2+3x+9x2+x+21x2+x+6x2]=
=227x4−6x3−x2 Now we may approximate the outer integral.
∫24∫x3x2(3x2+y)dydx≈∫24227x4−6x3−x2dx≈
≈3h[g(2)+4g(2+h)+2g(2+2h)+4g(2+3h)+g(4)]
g(x)=227x4−6x3−x2
h=44−2=21
g(2)=227(2)4−6(2)3−(2)2=190
4g(2+h)=4g(25)=4⋅227(25)4−6(25)3−(25)2=1909.375
2g(2+2h)=2g(3)=2⋅227(3)4−6(3)3−(3)2=2016
4g(2+3h)=4g(27)=4⋅227(27)4−6(27)3−(27)2=7564.375
g(4)=227(4)4−6(4)3−(4)2=3256
∫24∫x3x2(3x2+y)dydx≈
≈61[190+1909.375+2016+7564.375+3256]≈
≈2489.292
Comments