Question #311215

Use newton raphson method to Find an approximate root of x3



-5x+3 = 0 that lies in



[0,1]. Find the approximation to three decimal places.





1
Expert's answer
2022-03-14T19:24:14-0400

x35x+3=0[0,1]f(x)=x35x+3f(x)=3x25f(0)=3,f(0)=5f(1)=15+3=1,f(1)=35=2a0=0an+1=anf(an)f(an)a1=a0f(a0)f(a0)=035=0.6x^3-5x+3=0\\ \left[0,1\right]\\ f(x)=x^3-5x+3\\ f'(x)=3x^2-5\\ f(0)=3, f'(0)=-5\\ f(1)=1-5+3=-1, f'(1)=3-5=-2\\ a_0=0\\ a_{n+1}=a_n-\frac{f(a_n)}{f'(a_n)}\\ a_1=a_0-\frac{f(a_0)}{f'(a_0)}=0-\frac{3}{-5}=0.6

f(a1)=f(0.6)=0.6350.6+3=0.216f(a1)=f(0.6)=30.625=3.92a2=a1f(a1)f(a1)=0.60.2163.92=0.6551a2a1=0.0551f(a_1)=f(0.6)=0.6^3-5\cdot0.6+3=0.216\\ f'(a_1)=f'(0.6)=3\cdot0.6^2-5=-3.92\\ a_2=a_1-\frac{f(a_1)}{f'(a_1)}=0.6-\frac{0.216}{-3.92}=0.6551\\ |a_2-a_1|=0.0551

f(a2)=f(0.6551)=0.6551350.6551+3==0.0056f(a2)=f(0.6551)=30.655125=3.7125a3=a2f(a2)f(a2)=0.65510.00563.7125=0.6566a3a2=0.0015f(a_2)=f(0.6551)=0.6551^3-5\cdot0.6551+3=\\=0.0056\\ f'(a_2)=f'(0.6551)=3\cdot0.6551^2-5=-3.7125\\ a_3=a_2-\frac{f(a_2)}{f'(a_2)}=0.6551-\frac{0.0056}{-3.7125}=0.6566\\ |a_3-a_2|=0.0015

f(a3)=f(0.6566)=0.6566350.6566+3==0.00008f(a3)=f(0.6566)=30.656625=3.7067a4=a3f(a3)f(a3)=0.65660.000083.7067=0.6566a4a3=0x=a4=0.65660.657f(a_3)=f(0.6566)=0.6566^3-5\cdot0.6566+3=\\=0.00008\\ f'(a_3)=f'(0.6566)=3\cdot0.6566^2-5=-3.7067\\ a_4=a_3-\frac{f(a_3)}{f'(a_3)}=0.6566-\frac{0.00008}{-3.7067}=0.6566\\ |a_4-a_3|=0\\ x=a_4=0.6566\approx0.657



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS