x3−5x+3=0[0,1]f(x)=x3−5x+3f′(x)=3x2−5f(0)=3,f′(0)=−5f(1)=1−5+3=−1,f′(1)=3−5=−2a0=0an+1=an−f′(an)f(an)a1=a0−f′(a0)f(a0)=0−−53=0.6
f(a1)=f(0.6)=0.63−5⋅0.6+3=0.216f′(a1)=f′(0.6)=3⋅0.62−5=−3.92a2=a1−f′(a1)f(a1)=0.6−−3.920.216=0.6551∣a2−a1∣=0.0551
f(a2)=f(0.6551)=0.65513−5⋅0.6551+3==0.0056f′(a2)=f′(0.6551)=3⋅0.65512−5=−3.7125a3=a2−f′(a2)f(a2)=0.6551−−3.71250.0056=0.6566∣a3−a2∣=0.0015
f(a3)=f(0.6566)=0.65663−5⋅0.6566+3==0.00008f′(a3)=f′(0.6566)=3⋅0.65662−5=−3.7067a4=a3−f′(a3)f(a3)=0.6566−−3.70670.00008=0.6566∣a4−a3∣=0x=a4=0.6566≈0.657
Comments