Answer to Question #308200 in Quantitative Methods for raf

Question #308200

find the root between (2,3) of x^3-2x-5=0, by using false position method


1
Expert's answer
2022-03-09T14:25:54-0500

According to the false position method

xn=x1xn1x1f(xn1f(x1)f(x1)x_n = x_1 - \frac{x_{n-1}-x_1}{f(x_{n-1}-f(x_1)}f(x_1)

In our case f(x)=x32x5f(x) = x^3-2 x-5 , and x1 = 2, x2 = 3

nxnf(xn)121231632.0588235290.39079991942.0965586370.02242806252.0944405190.00123842462.0945576216.8530310572.0945511423.7917910682.09455152.09802107\begin{matrix} n & x_n &f(x_n) \\ 1& 2& -1 \\ 2& 3& 16 \\ 3& 2.058823529& -0.390799919 \\ 4& 2.096558637& 0.022428062 \\ 5& 2.094440519& -0.001238424 \\ 6& 2.094557621& 6.85303\cdot10{-5} \\ 7& 2.094551142& -3.79179\cdot10^{-6} \\ 8& 2.0945515& 2.09802\cdot 10^{-7} \\ \end{matrix}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment