Question #300553

Apply Runge-Kutta method of 4th order method to find the approximate



value of 𝑦 for 𝑥 = 0.1, if 𝑑𝑦



𝑑𝑥



= 𝑥 + 𝑦



2 given that 𝑦 = 1 where 𝑥 = 0.


1
Expert's answer
2022-02-22T11:58:31-0500

Solution:

 Let f(x,y):dy/dx=x+y2\text { Let } f(x, y) : d y / d x=x+y^{2}

Part I: h=0.1x0=0 and y+0=1h=0.1 x_{0}=0\ and\ y+0=1  

By Runge kutta method of 4th order. 

K1=hf(x0,y0)=0.1×f(0,1)=0.1×(0+12)=0.1K2=hf(x0+h2,y0+k12=0.1f(0+0.12,1+0.12)0.1×(0.12+(2.12)2)=0.1×(0.05+(1.05)2)=0.1153K_{1}=h f\left(x_{0}, y_{0}\right)=0.1 \times f(0,1) \\=0.1 \times\left(0+1^{2}\right)=0.1 \\K_{2}=h f\left(x_{0}+\frac{h}{2}, y_{0}+\frac{k_{1}}{2} \\=0.1 f\left(0+\frac{0.1}{2}, \frac{1+0.1}{2}\right)\right. 0.1 \times\left(\frac{0.1}{2}+\left(\frac{2.1}{2}\right)^{2}\right) \\=0.1 \times\left(0.05+(1.05)^{2}\right) \\=0.1153

K3=hf(x0+h2,y0+k22)=0.1×f(0+0.12,1+0.11532)=0.1×[0.12+(2.11532)2]=0.1169K4=hf(x0+h,y0+k3)=0.1×f(0+0.1,1+0.1169)=0.1[0.1+(1.1169)2]=0.1347K_{3}=h f\left(x_{0}+\frac{h}{2}, y_{0}+\frac{k_{2}}{2}\right) \\=0.1 \times f\left(0+\frac{0.1}{2}, 1+\frac{0.1153}{2}\right) \\=0.1 \times\left[\frac{0.1}{2}+\left(\frac{2.1153}{2}\right)^{2}\right] \\=0.1169 K_{4}=h f\left(x_{0}+h, y_{0}+k_{3}\right) \\=0.1 \times f(0+0.1,1+0.1169) \\=0.1\left[0.1+(1.1169)^{2}\right] =0.1347  

K=16(K1+2K2+2K3+K4)=16(0.1+0.1153×2+0.1169×2+0.1347)=0.1165\therefore K=\frac{1}{6}\left(K_{1}+2 K_{2}+2 K_{3}+K_{4}\right) \\ =\frac{1}{6}(0.1+0.1153 \times 2+0.1169 \times 2+0.1347) \\=0.1165

y=y0+k=1+0.1165=1.1165\therefore y=y_{0}+k=1+0.1165=1.1165

\therefore  The correct value of y when x=0.1 is 1.1165

Part 2:

h=0.1,x=0.1&y1=1.1165k1=hf(x1,y1)=0.1f(0.1,1.1105)=0.1[0.1+(1.1165)2]=0.1347K2=hf(x1+h2,y1+k12)=0.1×f(0.1+0.12,1.1165+0.13472)=0.1[0.15+(1.1838)2]0.1551K3=hf(x1+h2,y1+k22)=0.1×f(0.1+0.12,1.1165+0.15512)=0.1×[0.15+(1.1941)2]=0.1576K4=hf(x1+h1,y1+k3)=0.1f(0.1+0.1,1.1165+0.1576)=0.1[0.2+(1.2741)2]=0.1823\begin{aligned} &h=0.1, x=0.1 \& y_{1}=1.1165 \\ &k_{1}=h f\left(x_{1}, y_{1}\right)=0.1 f(0.1,1.1105) \\ &=0.1\left[0.1+(1.1165)^{2}\right] \\ &=0.1347 \\ &K_{2}=h f\left(x_{1}+\frac{h}{2}, y_{1}+\frac{k_{1}}{2}\right) \\ &=0.1 \times f\left(0.1+\frac{0.1}{2}, 1.1165+\frac{0.1347}{2}\right) \\ &=0.1\left[0.15+(1.1838)^{2}\right] \\ &0.1551 \\ &K_{3}=h f\left(x_{1}+\frac{h}{2}, y_{1}+\frac{k_{2}}{2}\right) \\ &=0.1 \times f\left(0.1+\frac{0.1}{2}, 1.1165+\frac{0.1551}{2}\right) \\ &=0.1 \times\left[0.15+(1.1941)^{2}\right] \\ &=0.1576 \\ &K_{4}=h f\left(x_{1}+h_{1}, y_{1}+k_{3}\right) \\ &=0.1 f(0.1+0.1,1.1165+0.1576) \\ &=0.1\left[0.2+(1.2741)^{2}\right] \\ &=0.1823 \end{aligned}

K=16(k1+2k2+2k3+k4)=16(0.1347+2×0.1551+2×0.1576+0.1823)=0.1751y=y1+k=1.1165+0.1571=1.2736\begin{aligned} &K=\frac{1}{6}\left(k_{1}+2 k_{2}+2 k_{3}+k_{4}\right) \\ &=\frac{1}{6}(0.1347+2 \times 0.1551+2 \times 0.1576+0.1823) \\ &=0.1751 \\ &\therefore y=y_{1}+k=1.1165+0.1571 \\ &=1.2736 \end{aligned}

K=16(k1+2k2+2k3+k4)=16(0.1347+2×0.1551+2×0.1576+0.1=0.1751K=\frac{1}{6}\left(k_{1}+2 k_{2}+2 k_{3}+k_{4}\right) \\=\frac{1}{6}(0.1347+2 \times 0.1551+2 \times 0.1576+0.1 \\=0.1751

 y=y1+k=1.1165+0.1571=1.2736\therefore y=y_{1}+k=1.1165+0.1571 =1.2736   

\therefore  The correct value of y when x=0.2 is 1.2736


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS