Answer to Question #225409 in Quantitative Methods for doraid

Question #225409

Approximate f(0.05) use the following data and the Newton forward-difference formula

x 0.0 0.2 0.4 0.6 0.8

f(x) 1.00000 1.22140 1.49182 1.82212 2.22554

b. use the Newton backward-difference formula to approximate f(0.65)




c.Use stirlings formula to approximate f(0.43).


1
Expert's answer
2021-08-15T17:39:40-0400

a)

The linear function is 

f0+(xx0)(f1f0)÷(x1x0)=1+(x0)(1.221401)÷(0.2)=1+(0.2214)x÷(0.2)=1+1.107xf0 + (x-x0)(f1-f0)\div(x1-x0) \\ =1 + (x-0)(1.22140-1)\div(0.2) \\ =1 + (0.2214)x\div(0.2) \\ =1 + 1.107x

 

So f(0.05) is approximately1+1.107(0.05)=1.1055351 + 1.107(0.05) = 1.105535


b)

Likewise the backwards difference results in :

 f1(xx1)(f1f0)÷(x1x0)=1.82212(x0.6)(2.225541.82212)÷(0.2)=1.82212+(x0.6)(2.0171)Sox=0.651.922975f1 - (x-x1)(f1-f0)\div(x1-x0) \\ =1.82212 - (x-0.6)( 2.22554-1.82212)\div(-0.2)\\ =1.82212 + (x-0.6)(2.0171)\\ So\\ x=0.65\\ 1.922975


c)

h=0.0=0.2h=0.-0=0.2

Taking X0=0.4 then p=XX0h=X0.42p=\frac{X-X_0}{h}=\frac{X-0.4}{2}


X=043P=XX)h=0.430.40.2=0.15X=043\\P=\frac{X-X_)}{h}=\frac{0.43-0.4}{0.2}=0.15

Y0=1.49182,ΔY0=0.3303,Δ2Y1=0.05988,Δ3Y1=0.01324,Δ4Y2=0.00238Y_0=1.49182,\Delta Y_0=0.3303,\Delta ^2Y_{-1}=0.05988,\Delta ^3Y_{-1}=0.01324,\Delta ^4Y_{-2}=0.00238

striling formula is

YP=Y0+P.ΔY0+ΔY12+p22Δ2Y1+p(p212)3.Δ3Y1+Δ3Y22+p2(p212)4Δ4Y2Y_P=Y_0+P.\frac{\Delta Y_0+\Delta Y_{-1}}{2}+\frac{p^2}{2}\Delta ^2Y_{-1}+\frac{p(p^2-1^2)}{3}.\frac{\Delta ^3Y_{-1}+\Delta ^3Y_{-2}}{2}+\frac{p^2(p^2-1^2)}{4}\Delta ^4Y_{-2}

Y0.15=1.49182+(0.15).0.3303+0.270422+0.02252.(0.05988)+(0.15)(0.2251)6.0.01324+0.010862+(0.0225)(0.2251)24.(0.00238)Y_{0.15}=1.49182+(0.15).\frac{0.3303+0.27042}{2}+\frac{0.0225}{2}.(0.05988)+\frac{(0.15)(0.225-1)}{6}.\frac{0.01324+0.01086}{2}+\frac{(0.0225)(0.225-1)}{24}.(0.00238)


Y0.15=1.49182+0.045054+0.000673650.00029447190.0000002181Y015=1.53725Y_{0.15}=1.49182+0.045054+0.00067365-0.0002944719-0.0000002181\\Y_{015}=1.53725


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment