Approximate f(0.05) use the following data and the Newton forward-difference formula
x 0.0 0.2 0.4 0.6 0.8
f(x) 1.00000 1.22140 1.49182 1.82212 2.22554
b. use the Newton backward-difference formula to approximate f(0.65)
c.Use stirlings formula to approximate f(0.43).
a)
The linear function isÂ
"f0 + (x-x0)(f1-f0)\\div(x1-x0) \\\\\n\n \n\n =1 + (x-0)(1.22140-1)\\div(0.2) \\\\\n\n \n\n =1 + (0.2214)x\\div(0.2) \\\\\n\n \n\n =1 + 1.107x"
Â
So f(0.05) is approximately"1 + 1.107(0.05) = 1.105535"
b)
Likewise the backwards difference results in :
 "f1 - (x-x1)(f1-f0)\\div(x1-x0) \\\\\n\n \n\n=1.82212 - (x-0.6)( 2.22554-1.82212)\\div(-0.2)\\\\\n\n \n\n=1.82212 + (x-0.6)(2.0171)\\\\\n\n \n\n \n\nSo\\\\ x=0.65\\\\\n\n1.922975"
c)
"h=0.-0=0.2"
Taking X0=0.4 then "p=\\frac{X-X_0}{h}=\\frac{X-0.4}{2}"
"X=043\\\\P=\\frac{X-X_)}{h}=\\frac{0.43-0.4}{0.2}=0.15"
"Y_0=1.49182,\\Delta Y_0=0.3303,\\Delta ^2Y_{-1}=0.05988,\\Delta ^3Y_{-1}=0.01324,\\Delta ^4Y_{-2}=0.00238"
striling formula is
"Y_P=Y_0+P.\\frac{\\Delta Y_0+\\Delta Y_{-1}}{2}+\\frac{p^2}{2}\\Delta ^2Y_{-1}+\\frac{p(p^2-1^2)}{3}.\\frac{\\Delta ^3Y_{-1}+\\Delta ^3Y_{-2}}{2}+\\frac{p^2(p^2-1^2)}{4}\\Delta ^4Y_{-2}"
"Y_{0.15}=1.49182+(0.15).\\frac{0.3303+0.27042}{2}+\\frac{0.0225}{2}.(0.05988)+\\frac{(0.15)(0.225-1)}{6}.\\frac{0.01324+0.01086}{2}+\\frac{(0.0225)(0.225-1)}{24}.(0.00238)"
"Y_{0.15}=1.49182+0.045054+0.00067365-0.0002944719-0.0000002181\\\\Y_{015}=1.53725"
Comments
Leave a comment